

March 15, 2022

Westford Planning Commission Attn: Melissa Manka, Planning Coordinator Westford Town Office 1713 VT Route 128 Westford, Vermont 05494

Stone Project No. 19-161 Subject: Hydrogeologic Evaluation of the Maple Shade (formerly Jackson Farm "Zone 3") Disposal Site

Dear Melissa,

We are pleased to provide a summary of the evaluation of the hydrogeologic capacity of the Maple Shade community wastewater disposal site in Westford, Vermont conducted by Stone Environmental, Inc. (Stone). We also present updated system layouts completed by Green Mountain Engineering, Inc. (GME). Based on analysis of available data from several previous investigations at this site and collection of new subsurface information, we conclude:

- 1. There appears to be adequate capacity for design flows of up to 24,600 gallons per day (gpd).
- 2. Groundwater mounding will be less than 1.2 feet above the seasonal high water table and 9.4 feet or greater below ground surface within the proposed disposal field area.
- 3. The ground water flow away from the site is to the east and the unnamed stream, then north via the steep-sided bedrock valley towards the Browns River.
- The Town may, at its discretion, direct Stone to request an updated Capacity Determination for a New Indirect Discharge of Sewage in accordance with Subsection 14-402 of the Indirect Discharge Rules.

1. Data Sources

Sources of information consulted to complete the analyses included:

- Site Capacity Confirmation and Project Financing Options for a Community Wastewater System at the Jackson Farm Site, Westford, Vermont: Letter report, maps, test pit logs, capacity calculations dated May 30, 2017 (and sources therein)
- Preliminary Aquatic Permitting Criteria Compliance Assessment, Jackson Farm Community Wastewater Site, Westford, Vermont: Letter report, maps, water quality sampling results and calculations dated January 10, 2019
- Capacity Determination and Aquatic Permitting Criteria Assessment, Jackson Farm Site, Westford, Vermont: Letter from Bryan Harrington, Vermont DEC Indirect Program, to Melissa Manka, Town of Westford, dated March 25, 2019

- Westford Community Wastewater Disposal System Preliminary Engineering Report, State Loan RF1-267-1.0, submitted December 29 2020 and updated May 2021
- Soil borings logged by Amy Macrellis of Stone, November 11-16, 2021
- Water level readings collected by Sarah Rathay and Lee Rosberg of Stone, November 24, 2021
- Hydraulic conductivity testing conducted by Sandra Walser and Lee Rosberg of Stone, Dec. 1, 2021
- Westford Community Wastewater System DEC meeting Summary and Disposal System Discussion, technical memo dated February 18, 2022
- Town of Westford, Vermont, Community Wastewater Disposal System Supplemental Preliminary Engineering Report, State Loan RF1-267-1.0, submitted February, 2022

Test pit logs from previous site investigations of the Maple Shade disposal site are compiled in Attachment 1.

2. Project Background

Wastewater disposal alternatives developed for the *Westford Community Wastewater Disposal System Preliminary Engineering Report* were based on prior test pit evaluations, preliminary disposal field layouts, and the preliminary Capacity Determination issued by the Indirect Discharge Program concurring with design flows of 12,600 gpd. This capacity estimate was necessarily limited to the depths of test pit excavations. Soil borings were recommended to be advanced early in final design to confirm depths to limiting features, followed by adjustments to capacity estimates and disposal field layouts if and as warranted.

3. Soil Borings and Monitoring Wells

Four groundwater-level observation wells were installed at the Maple Shade site between November 11 and November 16, 2021. The locations of the monitoring wells, MW-1 through MW-4, are shown on the site plan (Figure 1). The wells were installed by New England Boring Inc. of Londonderry, New Hampshire under the supervision of Stone personnel. Boreholes for the monitoring wells were completed using 4 ¹/₂-inch OD solid stem augers.

Each of the boreholes was completed to refusal at bedrock or to a depth of at least 60 feet. Borings were generally sampled continuously using a 2-foot split spoon to a depth of 20 feet, and at five-foot intervals from 20 feet to the bottom of each boring. The soils are primarily sand to gravelly sands near the ground surface along the upslope, western portion of the site (Figure 2 and Figure 3). The surficial sandy material is underlain by lacustrine clay at depths of 6.5 to 13.5 feet below ground surface (bgs) in portions of the proposed disposal field area, but the clay layer is not continuous (Figure 4 and Figure 5). All soil borings encountered outwash material (very fine sand to gravelly coarse sand, often finely bedded) beneath the surficial sand or clay horizons. Three of the borings (MW-1, MW-2, and MW-3) encountered a firm glacial till horizon above bedrock at 34-54 feet bgs. MW-4 was advanced to 60 feet below ground surface near the eastern edge of the field but did not encounter bedrock. Soil boring logs are included in Attachment 2.

The monitoring wells were constructed of two-inch diameter PVC pipe with 10 to 20-foot sections of 0.010inch slotted screen. The wells were installed into the open boreholes, and a filter pack of silica sand was poured into the annular space to a depth two feet above the top of the screen. A minimum two-foot bentonite seal was placed in the annular space above the silica sand, and native sandy material was placed into the remaining annular space. Concrete seals and metal protective casings were installed in the top foot of each monitoring well. Details of the individual monitoring wells' construction are included with the boring logs in Attachment 2. Monitoring well locations and top-of-casing elevations were estimated based on field GPS and VCGI Lidar data and will be surveyed during final design. Table 1 provides a summary of the monitoring well details.

Monitoring Well ID	Total Depth (ft bgs)	Top of Casing Elevation (ft AMSL)	Depth to Limiting Feature (ft bgs)	Limiting Feature Elevation (ft AMSL)	Depth to Groundwater (ft) on December 1, 2021	Groundwater Elevation (ft AMSL)
MW-1	34.0	558.6	13.5 (lacustrine clay)	545.3	Dry at 33.6	Dry at 525.0
MW-2	34.0	547.5	29.0 (ESHGW)	518.7	30.8	516.7
MW-3	53.5	543.0	13.0 (ESHGW)	530.2	44.6	498.4
MW-4	59.0	522.8	1.0 (ESHGW, lacustrine clay)	521.8	38.8	484.0

Table 1. Monitoring Well Details

Source: Stone field observations, 2021.

Notes: ft bgs – feet below ground surface; ft AMSL = feet above mean sea level; ESHGW = estimated seasonal high groundwater as determined by identification of redoximorphic features

Rising head and falling head slug tests were attempted in three of the monitoring wells (MW-2, MW-3, and MW-4), according to Stone standard operating procedures using a Solinst Levelogger 700 pressure transducer and Levelogger 5 Series instrument communication software. Slug test data were transformed and analyzed using the software application AquiferTest (Waterloo Hydrogeologic, Inc.) utilizing the Hvorslev (MW-2) and Bouwer and Rice (MW-3 and MW-4) analysis methods. Well MW-1 was dry.

Hydraulic conductivity estimates for the three wells ranged from 0.47 to 21.1 feet/day (Table 2). At MW-2 and MW-3, the saturated material consisted of till, resulting in relatively low hydraulic conductivity estimates (0.57-2.6 ft/day). At MW-4, saturated hydraulic conductivity was higher (21.1 feet/day) and consistent with the sandy aquifer material encountered. Analyses of all hydraulic conductivity tests completed to date are presented in Attachment 3.

Table 2. Saturated Zone Hydraulic Conductivity Estimates

Monitoring	Aquifer		Hydraulic C	onductivity		_
Well ID	Thickness (ft)	(ft/s)	(ft/min)	(ft/day)	(m/s)	Comments
MW-2	1.20	2.97E-05	1.78E-03	2.57	9.07E-06	Minimal saturated thickness; test likely conducted in till.
MW-3	6.87	5.46E-06	3.28E-04	0.472	1.67E-06	Saturated thickness consists of fine sand, silty clay, till, weathered bedrock.
MW-4	19.73	2.44E-04	1.47E-02	21.1	7.44E-05	Saturated thickness consists of very fine sand to gravelly coarse sand; finer material near top of aquifer.

Source: Stone field notes, 2021.

Notes: ft = feet; ft/s = feet per second; ft/min = feet per minute; ft/day = feet per day; m/s = meters per second.

4. Geology and Groundwater Flow Regime

A bedrock and groundwater contour map (Figure 1) and generalized hydrogeologic cross-sections (Figures 2-5) were developed based on Stone boring data, December 2021 groundwater elevation data, and previous test pit and site evaluations.

The soils within and near the proposed disposal fields are gravelly loamy sands near the ground surface. Beneath the surficial soils, gravelly fine to coarse sands were observed to depths of 6.5 to 13.5 feet bgs (Attachments 1-2 and Figures 2-5). A perched seasonal high groundwater condition exists across the area best suited to wastewater disposal at depths ranging from 6.5-13.5 feet bgs. This limiting condition consists of a combination of a lacustrine clay horizon (Figures 2, 3, and 4) and a potentially compact gravel horizon with indications of seasonal high groundwater (Figure 5). The well-drained sands, underlain by poorly drained silts and clays, are consistent with surficial geologic mapping in the vicinity, which shows glaciofluvial kame terrace deposits in the vicinity of the proposed disposal fields and glaciolacustrine deposits of clay and boulders located closer to Brookside Road.

Groundwater was encountered at approximately 31 to 45 feet bgs on December 1, 2021 (Figure 1 And Table 1). The saturated thickness of the water table aquifer was only 1.5-6.5 feet thick in the vicinity of MW-2 and MW-3. The water table aquifer is at least 20 feet thick at MW-4, although the aquifer is likely thicker in this area since the observation well was not drilled to refusal.

The bottom of the relatively high permeability sandy aquifer is apparently defined by a till and bedrock surface. Bedrock outcrops are apparent upslope of the western edge of the field, and borings MW-1, MW-2, and MW-3 encountered refusal that appeared to be bedrock (Attachment 2). These borings enabled a more detailed understanding of the bedrock surface topography. Bedrock elevations ranged from 540-485 feet AMSL beneath the disposal field area. The bedrock appears to form a buried valley with the lowest elevations occurring near the drainage channel and the unnamed stream headwaters east of the disposal site.

The groundwater contour data indicate that groundwater beneath the disposal field area flows west to eastnortheast with a hydraulic gradient of 0.08 feet/foot (8%) until it reaches the unnamed stream. From there, it flows roughly from south to north towards the Town Common area and ultimately to the Browns River. The buried bedrock valley appears to control groundwater flow beneath the disposal site.

5. Revised Wastewater Capacity Analysis

After adjusting the previously identified disposal field area to account for the results described above and separations from areas of unsuitable soils, an area totaling approximately 1.96 acres is available for wastewater disposal (Figure 1). The area remains limited by the presence of slopes in excess of 20% in portions of the best-suited soils at the northern end of the field, as well as by limited areas of slope in excess of 20% along the western tree line.

In order to estimate the hydraulic capacity of this potential wastewater dispersal site, we revised the Darcy's Law calculations completed for our May 30, 2017 analysis and report.

This formula is represented as Q = KiA where

- Q = design flow (gallons/day) (gpd)
- K = hydraulic conductivity (ft. /day)
- i = hydraulic gradient (slope of water table)
- A = transmitting soil cross-sectional area (square feet) = D x L where
 - D = transmitting soil thickness (depth to impeding layer or water table, minus the required separation depth, minus the system depth) (feet)
 - L = length of the disposal system in the estimated direction of groundwater flow (feet)

We used this formula to develop a series of hydraulic capacity estimates for each of the east-west crosssections (Figures 2, 3, and 5). Full assumptions and calculations for each estimate are documented in Attachment 4. Two sets of disposal field design parameters were considered:

- 1. The system's design is in-ground absorption trenches with the bottom of the trench a maximum of 18 inches (1.5 feet) below the ground surface, consistent with the 2017 analysis and with the Alternative 4 design revision included in the February 2022 PER amendment submittal (Figure 6). The required separation distance to seasonal high groundwater is 3.0 feet, leaving a transmitting soil thickness of 4.1-9.0 feet between the induced groundwater mound and the bottom of the disposal trenches.
- 2. The system's design is a series of subsurface drip irrigation disposal fields with the bottom of the drip lines a maximum of 12 inches (1.0 feet) below the ground surface, consistent with the Alternative 5 design layout included in the February 2022 PER amendment submittal (Figure 7). The required separation distance to seasonal high groundwater is 3.0 feet, leaving varying transmitting soil thicknesses of 6.1-9.5 feet between the induced groundwater mound and the bottom of the drip systems.

The 2017 and 2021 revised capacity estimates are summarized in Table 3.

	2017	Results		2021	Results	lesults			
	Transmitting Soil	Hydraulic Capacity	Transmitting	Soil Thickness (ft)	Hydraulic Capa	city Estimate (gpd)			
Cross Section	Thickness (ft)	Estimate (gpd)	Trenches	Drip Disposal	Trenches	Drip Disposal			
Α-Α'	6.2	38,975	9.0	9.5	53,900	56,900			
В-В'	2.5	10,968	6.1	6.6	21,900	23,700			
D-D'	n/a	n/a	8.5	9.0	82,500	87,400			

Table 3. Summary of Darcy's Law Wastewater Capacity Estimates

Source: Stone field notes and calculations, 2017 and 2021. Notes: ft = feet; gpd = gallons per day; n/a = not applicable

The hydraulic capacity available for wastewater disposal at the site ranges from 21,900-87,400 gallons per day, depending upon the portion of the disposal field evaluated and the disposal option modeled. The revised hydraulic capacity analysis confirms that the area required for layout of either wastewater disposal alternative is a greater limitation than the capacity of the underlying soil and surficial materials to accept and transmit renovated effluent.

6. Treatment and Disposal System Layouts and Design Criteria

Section II.A of the February 2022 Supplemental PER describes updates to the proposed system's initial year design flows and disposal field design criteria.

The design basis for treatment and disposal included in Alternative 4 is summarized in Table 4 and the conceptual disposal trench layout is provided in Figure 6. Treatment includes Advantex treatment pods to allow loading of the four proposed in-ground wastewater disposal trench fields at a wastewater loading rate of 1.5 gallons/day/square foot, for a total design capacity of 24,600 gallons/day. Each field is designed with inter-fingered trenches, half of which are proposed to be loaded on an annual basis.

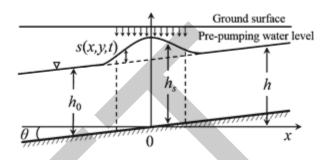
Disposal Field ID	Figure References	Design Dimensions	Adsorption Trench Area (sq. ft.)	Design Flow (gallons/day)
Field 1	Figure 5, D-D'	(20 trenches) x (4' wide) x (100' long)	8,000	6,000
Field 2	Figure 3, B-B'	(10 trenches) x (4' wide) x (280' long)	11,200	8,400
Field 3	Figure 2, A-A'	(10 trenches) x (4' wide) x (210' long)	8,400	6,300
Field 4	Figure 2, A-A'	(10 trenches) x (4' wide) x (130' long)	5,200	3,900
TOTAL			32,800	24,600

Table 1	Altornativo	1 Die	nocal Ei	d Doc	ian Cr	itoria
Table 4.	Alternative -	4 DIS	розаі гіє	ela Des	Ign Ci	пепа

The design basis for treatment and disposal included in Alternative 5 is summarized in Table 5 and the conceptual subsurface drip zone layout is provided in Figure 7. Treatment includes primary treatment in septic tanks, followed by disposal in a series of subsurface drip disposal zones at a wastewater loading rate of 0.9 gallons/day/square foot, for a total design capacity of 24,300 gallons/day. Each of the five proposed drip disposal zones is designed to include 10,800 square feet of effective leaching area and is intended to be dosed as a single zone (so Zone 1A and 1B, etc. are dosed at the same time). Discussions with the subsurface drip

disposal vendors' engineers indicate that annual rotation between zones, as would be required for adsorption trench systems under the IDRs, is not preferred for successful performance of the drip system (Attachment 5). The Alternative 5 conceptual disposal field layout provides full redundancy and is therefore conservative; preliminary discussions with DEC Wastewater Program staff indicate that full redundancy may ultimately not be required.

Drip Disposal Zone ID	Figure References	Design Dimensions	Effective Leaching Area (sq. ft.)	Design Capacity (gallons/day)	Design Flow (gallons/day)
Zone 1A	Figure 5, D-D'	100" wide x varies (46-64 feet long)	4,800	4,320	2,160
Zone 1B	Figure 5, D-D'	100' wide x 60' long	6,000	5,400	2,700
Zone 2	Figure 5, D-D'	300' wide x 36' long	10,800	9,720	4,680
Zone 3A	n/a	150' wide x 20' long	3,000	2,700	1,350
Zone 3B	Figure 3, B-B'	100' wide x 24' long	2,400	2,160	1,080
Zone 3C	Figure 3, B-B'	100' wide x 54' long	5,400	4,860	2,430
Zone 4A	Figure 3, B-B'	60' wide x 90' long	5,400	4,860	2,430
Zone 4B	Figure 2, A-A'	100' wide x 54' long	5,400	4,860	2,430
Zone 5	Figure 2, A-A'	150' wide x 72' long	10.800	9,720	4,860
TOTAL			54,000	48,600	24,300


For Alternative 4, an in-ground system utilizing four-foot-wide trenches and using pre-treatment to increase the design loading rate and maximizing the available length along contour (\sim 680 ft.) results in a linear loading rate of 24,600 gal/day / 680 ft. = 36 gallons/day/linear foot. For Alternative 5, pre-treatment is not utilized but the resulting linear loading rate is similar (24,300 gal/day / 680 ft. = 35.7 gallons/day/linear foot). Both linear loading rates are higher than 4.5 gallons per day per linear foot, and so if pre-treatment is desired in order to further increase the system's capacity, the state's Indirect Discharge Rules (Section 14-1010(d)(2)) require that a hydrogeologic analysis be completed to demonstrate:

- An unsaturated soil zone of at least 36 inches is maintained beneath the filtrate disposal system; and
- The mounded water table is at least one foot below grade at the downhill toe of the filtrate disposal system.

The required hydrogeological analysis was completed for Alternative 4 only, as described below.

7. Groundwater Mounding

Working with Green Mountain Engineering, Stone evaluated the degree of groundwater mounding that would result from loading each of the proposed disposal field designs at anticipated design capacities. The mounding of renovated effluent was evaluated for each disposal alternative along each of the three transects evaluated in the revised capacity analysis (Figures 2, 3, and 5). Mounding was determined using the Zlotnik et al. (2017) analytical model¹ to predict the rise of the water table that would be caused by long-term operation of each leachfield at the full design capacity. This

Drawing 1. Cross section through water-table aquifer with sloping base along x axis of mapping coordinate system with $\gamma = 0$; $\phi = 0$; $i = \tan \vartheta$ (from Zlotnik et al. 2017).

analytical model is similar to Hantush $(1967)^2$ but allows prediction of transient or steady-state rise of the water table beneath a rectangular recharge source for unconfined, sloping aquifers.

As a conservative design scenario, the model was applied to predict elevations of the mounded water table starting on top of spring high water table conditions, consistent with the Darcy's Law capacity analysis assumptions described in Section 5. Results were evaluated to determine whether the induced groundwater elevations would meet the criteria of providing at least three feet of unsaturated soil beneath every trench in the leachfields, as required by 14-1401(a)(1)(E) of the IDRs.

The hydrogeologic evaluation also assessed the potential for effluent breakout downslope of the disposal fields, by determining the direction of groundwater flow from the leachfields and conservatively calculating the maximum acceptable water table rise at downslope model monitoring points. This assessment was based on ground surface topography, analysis of the groundwater contour maps, and assessment of the cross sections from the proposed leachfields to limiting features (in Figures 2-3) and at the downslope toe of the disposal field (Figure 5).

Details of the model results, conceptual cross-sections, and contour maps of predicted groundwater mounding for Alternative 4 are provided in Attachment 6.

The modeling analysis indicated that the required minimum three feet of unsaturated soil beneath the leachfields will be met at all times at the proposed 24,600 gpd design flow for Alternative 4 (Table 6). With the inter-fingered adsorption trenches as designed by Green Mountain Engineering, the depth of unsaturated soils between the infiltrative surface and the mounded seasonal high water table would be at least 4.9 feet at

¹ http://www.aqtesolv.com/help/moundsolv/4/solutions.htm

² Hantush, M.S. 1967. Growth and Decay of Groundwater Mounds in Response to Uniform Percolation. Water Resources Research 3(1): 227-234. https://doi.org/10.1029/WR003i001p00227

cross section B-B' (Figure 3), the most limited of the three cross-sections. Depth of unsaturated soils would be approximately 7 feet at the other two locations modeled – providing a substantial margin of safety. Based on the direction of groundwater flow and the extent of groundwater mounding that is predicted, the analysis also indicates that the leachfields will not cause effluent break-out at downslope locations beyond the toe of each disposal field (Table 6 and Attachment 6 model cross sections).

Cross Section	Disposal Fields	Design Flow Applied (gallons/day)	Transmitting soil thickness before mounding (ft)	Maximum acceptable water table rise (ft) ¹	Maximum water table rise at disposal fields (ft)	Water table rise at downslope monitoring point (ft)	Comment
A-A'	Field 3, Field 4	10,200	9.0	2.50	0.99	0.82	Downslope monitoring point is TP-111
B-B'	Field 2	8,400	6.1	1.66	1.17	0.87	Downslope monitoring point is TP-123
D-D'	Field 1	6,000	8.5	8.00	0.48	0.46	Downslope monitoring point is downhill toe of Field 1

Table 6. Summary of Mounding Analysis Results, Alternative 4

¹ Maximum acceptable water table rise is set conservatively by cross section to ensure that an unsaturated zone of at least 36" is maintained beneath the disposal system and that the mounded water table is at least one foot below grade at downhill toe of system.

Alternative 4 is more conservative than Alternative 5 in terms of loading rates and disposal system layout. The subsurface drip disposal zones proposed in Alternative 5 will disperse renovated effluent at a similar total design flow capacity, but using a lower loading rate (maximum 0.9 gallons/day/square foot versus the 1.5 gallons/day/square foot loading rate applied for Alternative 4) and utilizing a greater proportion of the suitable disposal area. Mounding analysis for the subsurface drip disposal system layout will generally result in smaller water table rises compared to the Alternative 4 layout, regardless of the final layout and dosing rotation (whether full redundancy, 150% of design flow, or other dosing regime to be determined in consultation with Oakson Inc., the project engineer, and VTDEC – see Attachment 5).

Given the substantial safety margins demonstrated for groundwater mounding under Alternative 4, and remaining uncertainty about details of subsurface drip disposal zone layout and dosing regime, we presume that Alternative 5 will also meet the requirements of §14-1401(a)(1)(E) of the IDRs. If further work is required to demonstrate compliance for Alternative 5 prior to or concurrent with a permit application for this *New Indirect Discharge of Sewage*, it will be completed during final design engineering.

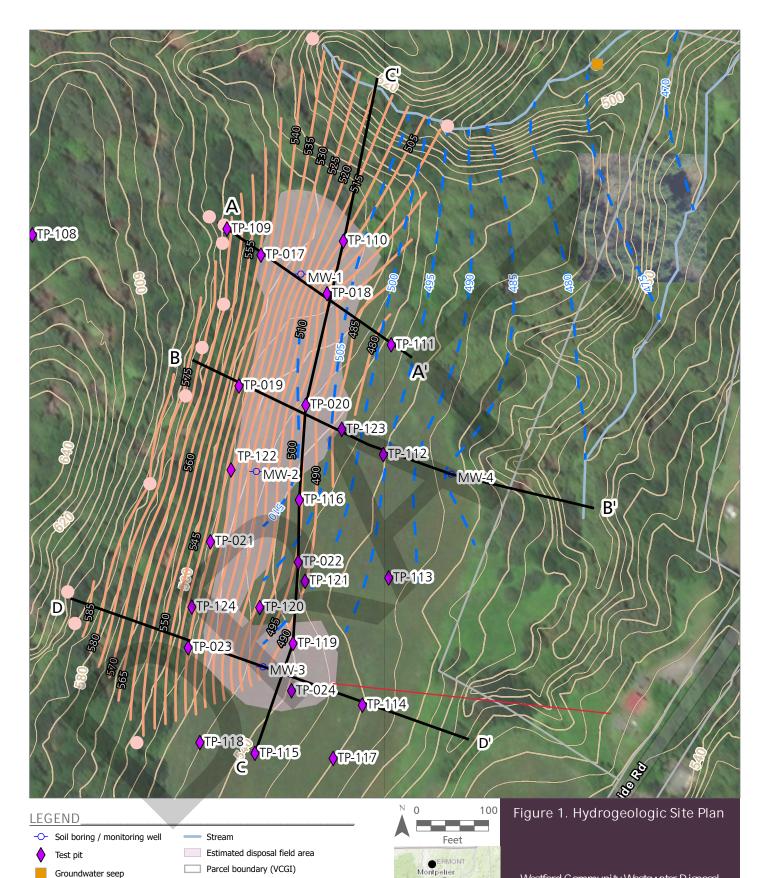
Receiving Waters and Sensitive Receptors

The new data support previous conclusions that groundwater flow is toward the unnamed stream flowing north from the eastern boundary of the site towards the Browns River. Given the new bedrock and groundwater data and our current understanding of groundwater flow, renovated effluent recharging in the northern portion of the site will likely flow downslope and east along the surface of the lacustrine clay layer towards the unnamed stream (Figure 1). Renovated effluent recharging in the southern portion of the site will follow a similar flow path but may not encounter the lacustrine clay layer. Instead, it may encounter the surficial saturated sand aquifer and compact glacial till and flow east until it reaches the unnamed stream. Upon reaching the unnamed stream, flow is generally to the north and ultimately to the Browns River.

The lacustrine clay and compact glacial till layers present at the site, coupled with the hydrologic divide provided by the unnamed stream, provide reasonable protection and isolation for nearby and downgrade potable water supplies from the proposed new indirect discharge. There are up to nine private potable water supply wells that appear to be located within 1,000' of the proposed new indirect discharge, all of which are on the opposite side of the buried bedrock valley and the hydrologic divide marked by the unnamed stream. Further evaluation of these and other potential sensitive receptors will be completed, and mitigation measures identified if any are needed, prior to submittal of a permit application for this *New Indirect Discharge of Sewage*.

Conclusions

The site hydrogeology is suitable for an indirect discharge of up to 24,600 gpd. The groundwater flows in a steep-sided buried bedrock valley toward the north-northeast. The estimated groundwater mounding will result in a minimum of 4.9 feet of unsaturated soil. The determination of the Browns River as receiving water is reinforced by additional data.


Sincerely yours,

Imy Macrellia

Amy Macrellis Senior Water Quality Specialist Direct Phone / 802.229.1884 Mobile / 802.272.8772 E-Mail / amacrellis@stone-env.com

Encl.

Figures

DACK

TAINS

NEW

Concord

Westford Community Wastewater Disposal System

Prepared for the Town of Westford

STONE ENVIRONMENTAL

Path: Westford borings Site Map Exported: 3/2/2022 8:47 AM by amym

Surface bedrock

Groundwater Contours (feet,

Bedrock Contours (feet)

Cross Section

Dec. 2021)

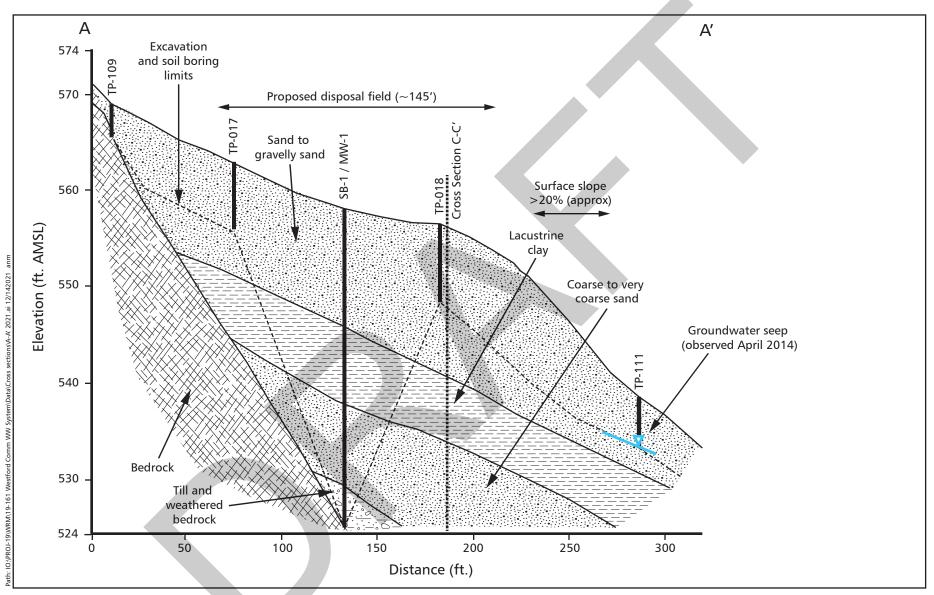
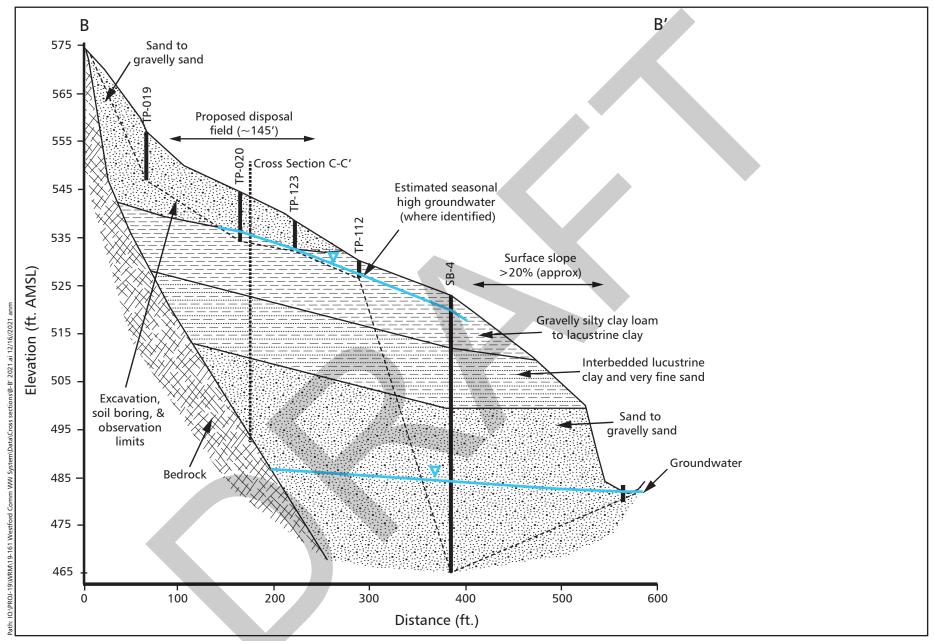



Figure 2: Stratigraphic Cross Section A-A' (West to East) Westford Community Wastewater Disposal System, Maple Shade Disposal Site Hydrogeologic Investigation, Westford, Vermont

Figure 3: Stratigraphic Cross Section B-B' (West to East) Westford Community Wastewater Disposal System, Maple Shade Disposal Site Hydrogeologic Investigation, Westford, Vermont

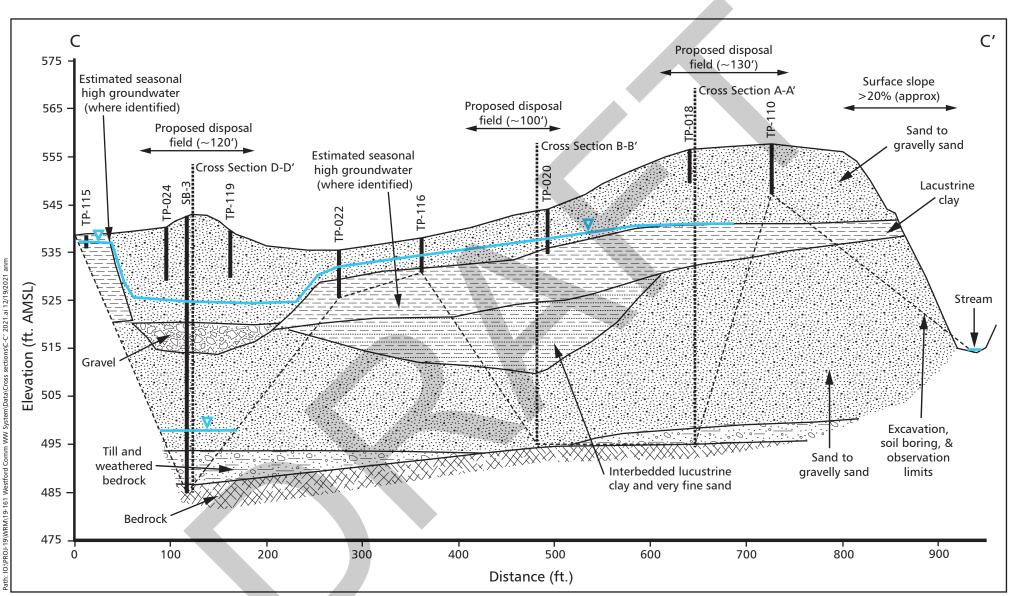
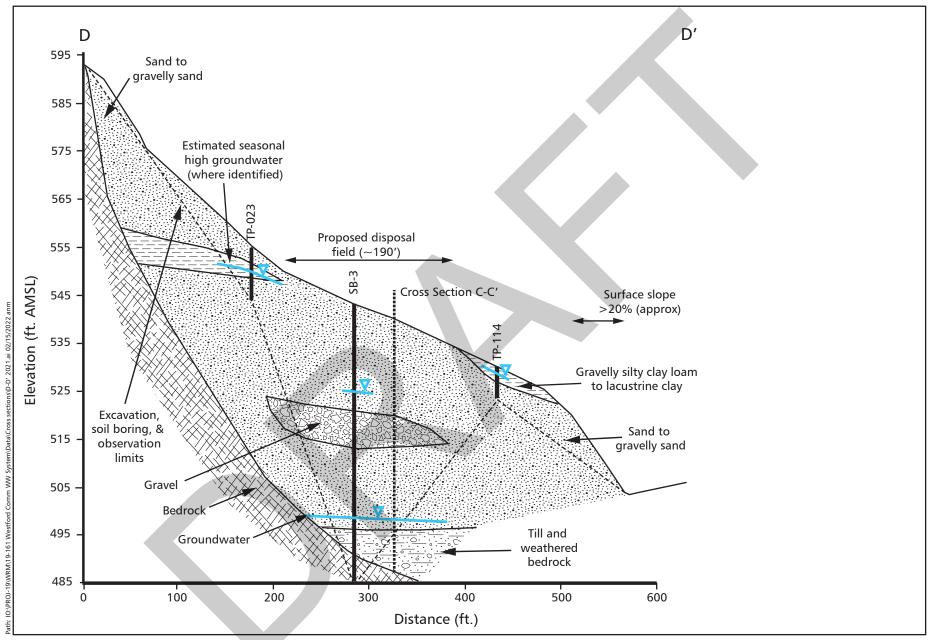



Figure 4: Stratigraphic Cross Section C-C' (South to North) Westford Community Wastewater Disposal System, Maple Shade Disposal Site Hydrogeologic Investigation, Westford, Vermont

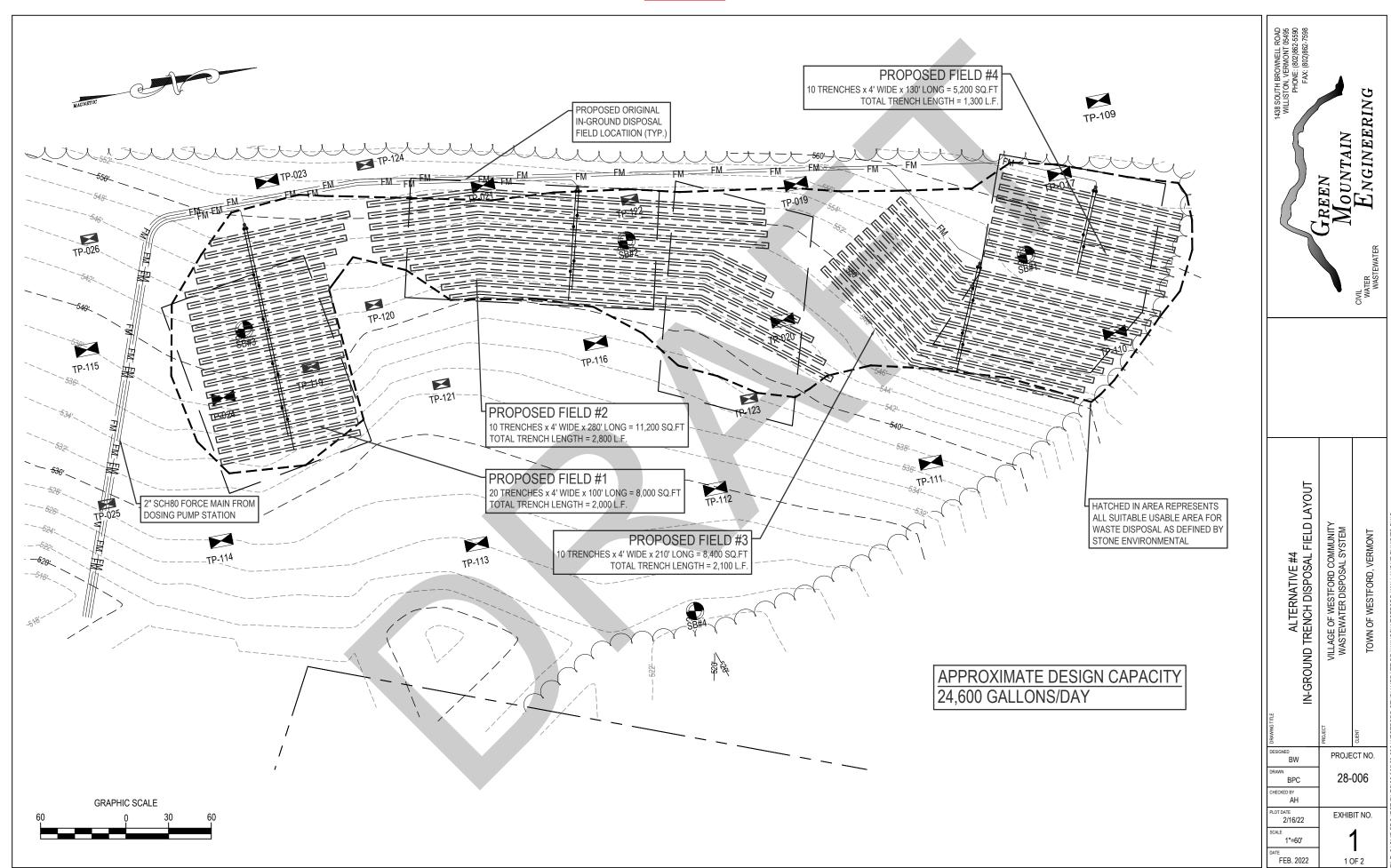
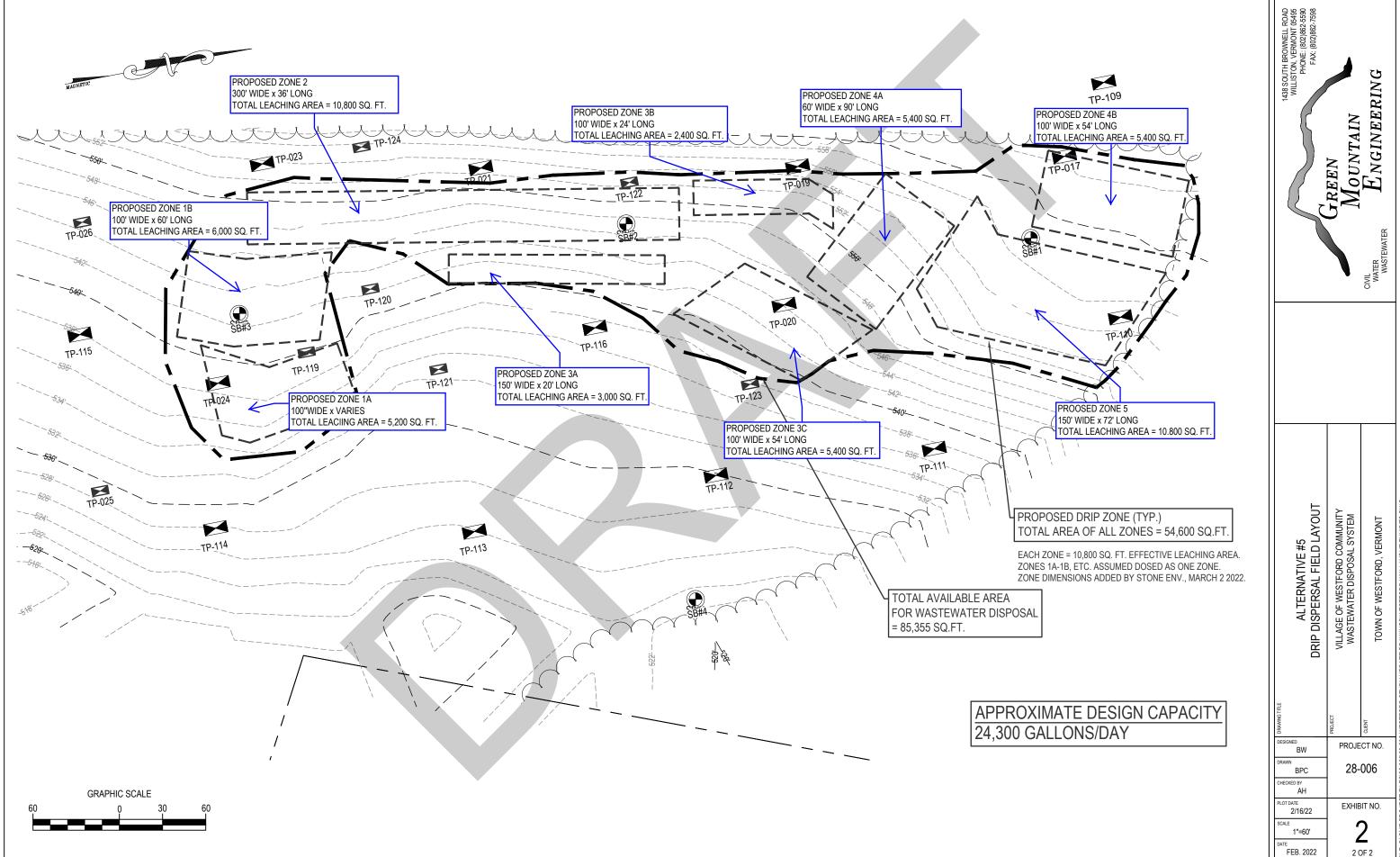
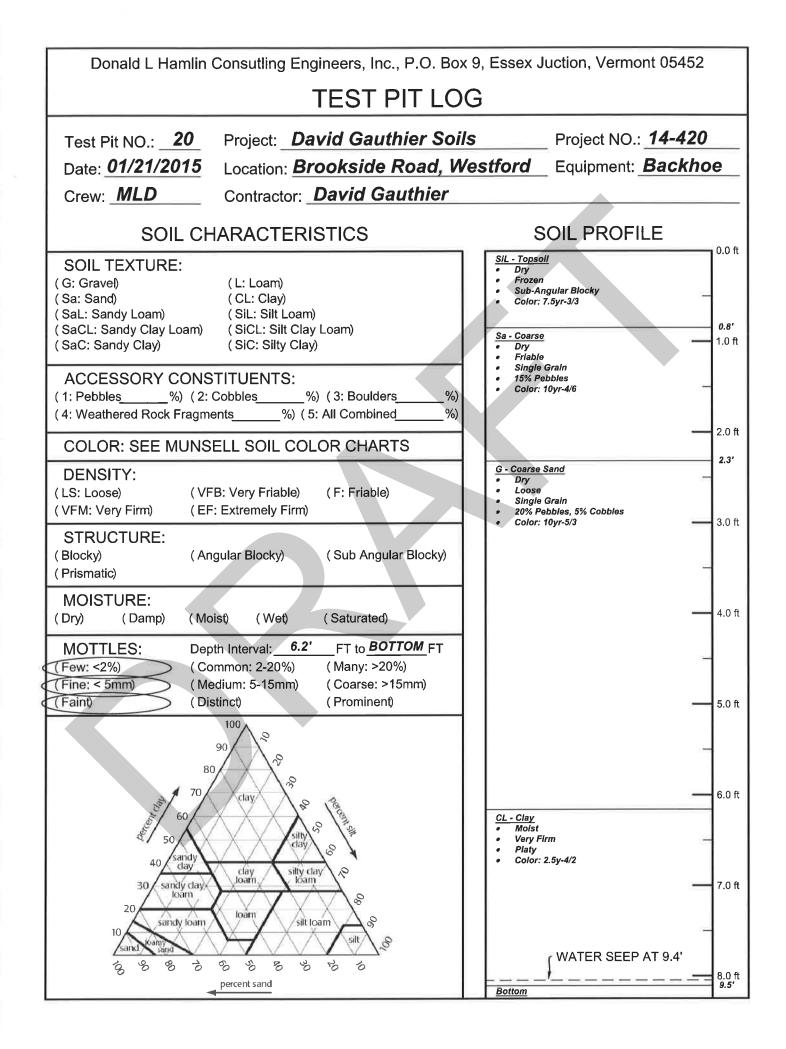
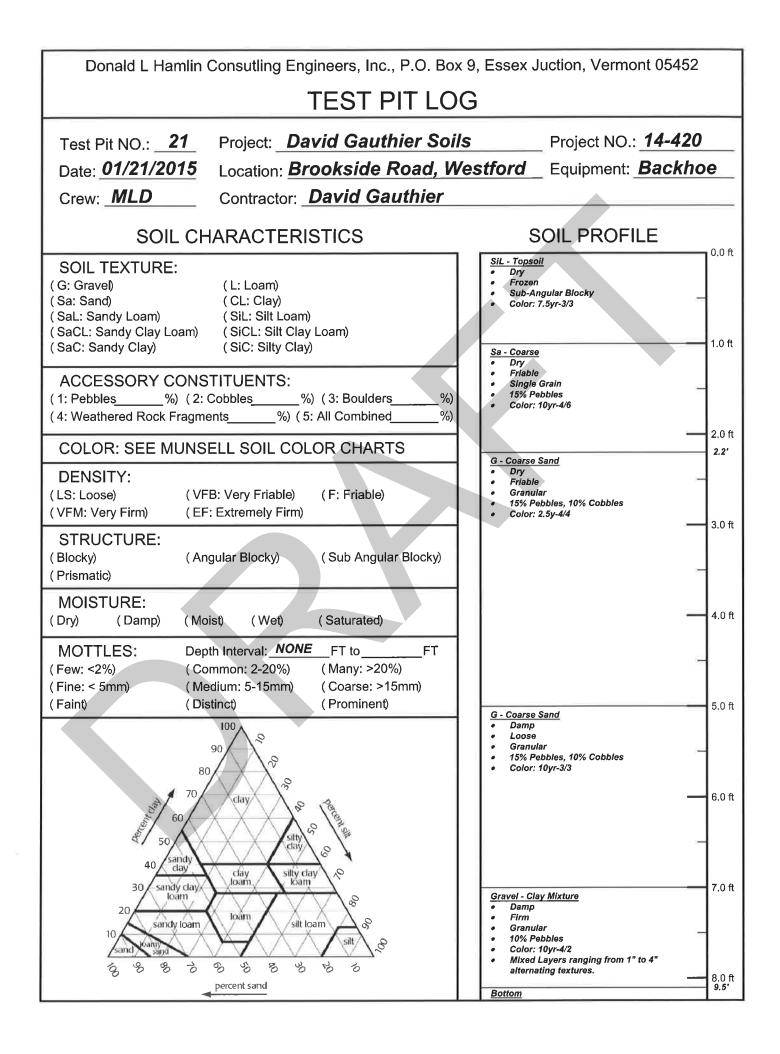


Figure 5: Stratigraphic Cross Section D-D' (West to East) Westford Community Wastewater Disposal System, Maple Shade Disposal Site Hydrogeologic Investigation, Westford, Vermont



PROJECT FILES/28-000/28-006 WESTFORD STUDY UPDATE/DRAWINGS/WESTFORD WW LAYOUT EXHIBITS.DWG





Attachment 1: Compiled test pit logs from prior site evaluations

Š 12

Donald L Hamlin C	Donald L Hamlin Consutling Engineers, Inc., P.O. Box 9, Essex Juction, Vermont 05452 TEST PIT LOG					
Test Pit NO.: <u>19</u> Date: <u>01/21/2015</u> Crew: MLD	Project: David Gauthier Soil Location: Brookside Road, W					
	ARACTERISTICS	SOIL PROFILE				
	(SiC: Silty Clay)	SiL - Topsoil 0.0 ft Dry Frozen Sub-Angular Blocky Color: 7.5yr-3/3 Color: 7.5yr-3/3 1.0 ft Single Grain Single Grain Slow Color: 10yr-4/6 10 yr-4/6				
	ELL SOIL COLOR CHARTS	— 2.0 ft				
	B: Very Friable) (F: Friable) : Extremely Firm)					
STRUCTURE: (Blocky) (Ang (Prismatic)	gular Blocky) (Sub Angular Blocky)	G - Coarse Sand • Dry • Loose • Single Grain • 15% Pebbles, 15% to 20% Cobbles • Color: 10yr-5/3				
MOISTURE: (Dry) (Damp) (Moi	st) (Wet) (Saturated)	4.0 ft				
(Few: <2%) (Cor (Fine: < 5mm) (Me	th Interval: <u>NONE</u> FT to FT mmon: 2-20%) (Many: >20%) dium: 5-15mm) (Coarse: >15mm) tinct) (Prominent)	5.0 ft				
80 70 60 50 40 50 40 50 40 50 40 50 50 40 50 50 50 50 50 50 50 50 50 5	100 90 2 0	Sa - Coarse 6.0 ft • Dry • • Loose • • Single Grain - • 5% Pebbles - • Color: 2.5y-5/3 -				
20 sandy loam sand cannot sand sand sand sand	toam silt toam silt toam silt toam silt toam silt toam silt percent sand					

Donald L Hamlin Consutling Engineers, Inc., P.O. Box 9, Essex Juction, Vermont 05452					
TEST PIT LO					
Test Pit NO.: 22 Project: David Gauthier Soi					
	/estford Equipment: Backhoe				
Crew: <u>MLD</u> Contractor: <u>David Gauthier</u>					
SOIL CHARACTERISTICS	SOIL PROFILE				
SOIL TEXTURE:(G: Gravel)(L: Loam)(Sa: Sand)(CL: Clay)(SaL: Sandy Loam)(SiL: Silt Loam)(SaCL: Sandy Clay Loam)(SiCL: Silt Clay Loam)(SaC: Sandy Clay)(SiC: Silty Clay)	SiL - Topsoil • Dry • Frozen • Sub-Angular Blocky • Color: 10yr-2/1 Sa - Coarse • Dry				
ACCESSORY CONSTITUENTS: (1: Pebbles%) (2: Cobbles%) (3: Boulders%) (4: Weathered Rock Fragments%) (5: All Combined%)	 Frlable Single Grain 15% Pebbles Color: 10yr-4/6 2.0 ft 				
COLOR: SEE MUNSELL SOIL COLOR CHARTS	2.0 K				
DENSITY:(LS: Loose)(VFB: Very Friable)(F: Friable)(VFM: Very Firm)(EF: Extremely Firm)	SiCL • Dry • Firm • Sub-Angular Blocky • 5% Pebbles 3.0 ft				
STRUCTURE: (Blocky) (Angular Blocky) (Sub Angular Blocky) (Prismatic)	• 5% Pebbles 3.0 ft				
MOISTURE: (Dry) (Damp) (Moist) (Wet) (Saturated)	4.0 ft G - Coarse Sand				
MOTTLES: Depth Interval: 3.0' FT to BOTTOM FT (Few: <2%)	Damp Loose Granular 15% Pebbles, 20% Cobbles Color: 10yr-5/3 5.0 ft				
90 90 80 70 60 60 80 70 70 70 70 70 70 70 70 70 70 70 70 70					
40 sandy 40 sandy 30 sandy clay boam	• Very Firm • Platy • Color: 2.5y-4/2 — 7.0 ft				
10 sandy loam loam silt loam silt loam silt silt sand sandy loam percent sand					

Donald L Hamlin Consutling Engineers, Inc., P.O. TEST PIT L	
Test Pit NO.: 23 Project: David Gauthier S	SoilsProject NO.: 14-420WestfordEquipment: Backhoe
SOIL CHARACTERISTICS SOIL TEXTURE: (G: Gravel) (L: Loam) (Sa: Sand) (CL: Clay)	0.0 ft Sub-Angular Blocky Color: 7.5yr-3/3
(SaL: Sandy Loam) (SiL: Silt Loam) (SaCL: Sandy Clay Loam) (SiCL: Silt Clay Loam) (SaC: Sandy Clay) (SiC: Silty Clay) ACCESSORY CONSTITUENTS: (1: Pebbles%) (2: Cobbles%) (2: Cobbles%)	- %) Sa - Coarse • Dry • Friable • Single Grain • 15% Pebbles • Color: 10yr-4/6
(4: Weathered Rock Fragments%) (5: All Combined	2.0 ft <u>CL - Clay</u> • Dry • Very Firm • Platy • Color: 2.5y-5/3
(VFM: Very Firm) (EF: Extremely Firm) STRUCTURE: (Angular Blocky) (Blocky) (Angular Blocky) (Prismatic) (Sub Angular Blocky)	
MOISTURE: (Dry) (Damp) (Moist) (Wet) (Saturated) MOTTLES: Depth Interval: 4.5' FT to BOTTOM F" (Few: <2%)	T 4.0 ft
(Faint) (Distinct) (Prominent)	G - Coarse Sand 5.0 ft • Dry Loose • Single Grain 15% Pebbles, 20% Cobbles • Color: 10yr-5/3 Becomes damp/moist @ 6.5'
40 samdy clay silty clay so	6.0 ft
30 sandy loam loam silt loam silt loam silt of the sand loam silt loam silt loam silt loam silt loam silt of the sand loam silt sand loam san	7.0 ft
percent sand	<u>Bottom</u>

Donald L Hamlin Consutling Engineers, Inc., P.O. Box 9, Essex Juction, Vermont 05452 TEST PIT LOG				
	estford Equipment: Backhoe			
Crew: <u>MLD</u> Contractor: <u>David Gauthier</u>				
SOIL CHARACTERISTICS	SOIL PROFILE			
SOIL TEXTURE:(G: Gravel)(L: Loam)(Sa: Sand)(CL: Clay)(SaL: Sandy Loam)(SiL: Silt Loam)(SaCL: Sandy Clay Loam)(SiCL: Silt Clay Loam)(SaC: Sandy Clay)(SiC: Silty Clay)	SiL - Topsoil 0.0 ft • Dry Frozen • Sub-Angular Blocky 0.0 ft • Color: 7.5yr-3/3 1.0 ft Sa - Coarse 0ry			
ACCESSORY CONSTITUENTS: (1: Pebbles%) (2: Cobbles%) (3: Boulders%) (4: Weathered Rock Fragments%) (5: All Combined%)	 Friable Single Grain 10% Pebbles Color: 10yr-4/6 2.0 ft 			
COLOR: SEE MUNSELL SOIL COLOR CHARTS	2.2'			
DENSITY:(LS: Loose)(VFB: Very Friable)(F: Friable)(VFM: Very Firm)(EF: Extremely Firm)				
STRUCTURE: (Blocky) (Angular Blocky) (Prismatic)	20% Pebbles 5% Pebbles, Fine Sand 5% Pebbles, Fine Sand			
MOISTURE: (Dry) (Damp) (Moist) (Wet) (Saturated)	4.0 ft			
MOTTLES: Depth Interval: NONE FT to FT (Few: <2%)	40% Pebbles, Coarse Sand 5% Pebbles, Fine Sand 5.0 ft			
	5.0 ft			
TO clay Por particular to the second	6.0 ft			
40 sandy day clay silty day o 30 sandy clay loam loam				
10 sand vioam sitt loam sitt loam sitt of sand vioam sitt sitt loam sitt of sand vioam sitt of sand vioam sitt sand vioam sitt of sand vioam sitt sand vioam sitt of	20% Pebbles, Coarse Sand			

Site Capacity and Opinion of Probable Cost of a Shared Wastewater System at the Jackson Farm Property, Westford, Vermont – Backhoe Test Pit Logs

Soils investigation conducted by Amy Macrellis of Stone Environmental, Inc. on August 4, 2015. Backhoe supplied by John Roberts of Roberts Excavation Inc. (operator Glenn). Others present during some or all of the investigation included David and Lynn Gauthier (property owners), Melissa Manka (Town of Westford Planning Coordinator), Kevin Camara (Green Mountain Engineering), Bryan Harrington (Vermont DEC, Indirect Discharge Permitting Program), Jessanne Wyman(Vermont DEC, Regional Engineer), and Mary Clark (Vermont DEC, Hydrogeologist).

Woodland Area West of "Zone 3" Hay Field

Test Pit TP-101

0" – 6"	Brown (7.5YR 5/2) fine sandy loam, weak subangular blocky structure, friable consistence, moist.
	Topsoil.
6" – 15"	Strong brown (7.5YR 4/6) fine sandy loam, weak subangular blocky structure, friable consistence,
	moist. Common tree roots.
15" – 24"	Brown (7.5YR 5/4) loamy fine sand, weak subangular blocky structure, loose consistence, moist.
24" – 72"	Light olive brown (2.5Y 5/3) sand, weak subangular blocky structure, loose consistence, moist.
72" – 80"	Brown (10YR 5/3) gravelly silt loam, moderate subangular blocky structure, very firm consistence,
	moist. Few fine faint mottles at 76". Very hard digging with hardpan and many cobbles.

No bedrock to depth. Seasonal high groundwater indicators at 76".

Test Pit TP-102

0" – 6"	Brown (7.5YR 4/2) fine sandy loam, granular structure, loose consistence, moist. Topsoil and duff.
6" – 19"	Strong brown (7.5YR 5/6) gravelly fine sandy loam, weak subangular blocky structure, friable
	consistence, moist. 10% gravel.
19" – 36"	Brown (10YR 5/3) gravelly silt loam, moderate subangular blocky structure, very firm consistence,
	dry. Till / hardpan. Mineralogy makes identification of redoximorphic features very difficult. Few fine
	faint mottles possible at 24".

No bedrock to depth. Possible seasonal high groundwater indicators at 24".

Test Pit TP-103

0" – 7"	Dark brown (7.5YR 3/3) fine sandy loam, weak subangular blocky structure, loose consistence, moist.
	Topsoil.
7" – 13"	Brown (7.5YR 4/4) very fine sandy loam, moderate angular blocky structure, friable consistence,
	moist.
13" – 22"	Dark reddish brown (5YR 3/4) loamy sand to loamy fine sand, weak angular blocky structure, friable
	consistence, moist.
22" – 46"	Olive brown (2.5Y 4/3) fine sand, weak subangular blocky structure, friable consistence, moist.
46" – 72"	Light olive brown (2.5Y 5/3) gravelly very fine sandy loam, moderate platy structure, firm consistence,
	moist. Few fine faint mottles at 48". Boulder in center of test pit at 54".

No bedrock to depth. Seasonal high groundwater indicators at 48".

0" - 7"	Black (7.5YR 2.5/1) silty clay loam, weak granular structure, loose consistence, moist. Topsoil.
7" – 16"	Brown (7.5YR 4/4) silty clay loam, moderate platy structure, loose consistence, moist.
16" – 28"	Olive brown (2.5Y 4/3) gravelly silty clay, moderate platy structure, firm consistence, moist. Many
	medium distinct mottles at 16".

No bedrock to depth. Seasonal high groundwater indicators at 16".

Test Pit TP-105

0" – 5"	Black (7.5YR 2.5/1) silty clay loam, weak granular structure, loose consistence, moist. Topsoil.
5" – 14"	Brown (7.5YR 4/4) very fine sandy loam, weak subangular blocky structure, loose consistence, moist.
14" – 23"	Brown (7.5YR 4/3) very fine sandy loam, weak subangular blocky structure, friable consistence, moist.
	VT DEC observed indications of seasonal high groundwater at 14".
23" – 47"	Olive brown (2.5Y 4/3) very gravelly silt loam, moderate subangular blocky structure, firm
	consistence, moist to wet. Common medium prominent mottles beginning at 26".

No bedrock to depth. Conservative estimate of seasonal high groundwater indicators at 14"; clear evidence at 26".

Test Pit TP-106

0" – 5"	Black (7.5YR 2.5/1) gravelly very fine sandy loam, weak granular structure, loose consistence, moist.
	Duff/topsoil.
5" – 16"	Brown (7.5YR 4/4) very fine sandy loam, weak subangular blocky structure, loose consistence, moist.
16" – 27"	Brown (7.5YR 4/3) gravelly silt loam, weak subangular blocky structure, friable consistence, moist.
27" – 42"	Dark grayish brown (2.5Y 4/2) very gravelly very fine sandy loam, moderate subangular blocky
	structure, firm consistence, moist. Few small faint mottles beginning at 27".

No bedrock to depth. Seasonal high groundwater indicators at 27".

Test Pit TP-107

0" – 3"	Black (7.5YR 2.5/1) veryfine sandy loam, weak granular structure, loose consistence, moist. Duff, very
	rich organic material.
3" – 12"	Strong brown (7.5YR 4/6) gravelly fine sandy loam, weak granular structure, loose consistence, moist.
	10% gravel.
12" – 18"	Strong brown (7.5YR 5/6) gravelly fine sandy loam, weak subangular blocky structure, friable
	consistence, moist. 15% gravel.
18" – 30"	Yellowish brown (10YR 5/4) gravelly very fine sandy loam, moderate subangular blocky structure,
	friable consistence, moist. 15% gravel.
30" – 40"	Light olive brown (2.5Y 5/3) Very gravelly fine sandy loam, weak subangular blocky structure, firm
	consistence, moist. 30% gravel.
40" – 84"	Light olive brown (2.5Y 5/3) Very gravelly loamy sand, weak granular structure, very firm consistence,
	moist to wet. Horizon coarsens downward, to very gravelly sand and coarse sand at 60", but also
	becomes wetter. Few fine distinct mottles at 72".

No bedrock to depth. Seasonal high groundwater indicators at 72".

0" – 6"	Dark brown (7.5YR 3/2) sandy loam, weak granular structure, loose consistence, moist. Duff/topsoil.
6" – 13"	Strong brown (7.5YR 4/6) loamy sand to loamy coarse sand, weak granular structure, loose
	consistence, moist.
13" – 21"	Brown (7.5YR 4/4) sand, no structure (single grain), loose consistence, moist.
21" – 28"	Dark grayish brown (10YR 3/4) coarse sand, no structure (single grain), loose consistence, moist.
28" – 55"	Dark grayish brown (2.5Y 4/2) silty clay loam, moderate subangular blocky structure, firm
	consistence, moist. Common medium prominent mottles at 28". Upper boundary of this horizon is
	wavy – VT DEC measured depth to mottles at 24" in a different area of the pit, but at the same
	relative position in the soil profile.

"Zone 3" Hay Field

Test Pit TP-109

No bedrock to depth. Seasonal high groundwater indicators at 28".		
"Zone 3"]	Hay Field	
Test Pit TP-3	<u>109</u>	
0" – 7"	Very dark brown (7.5YR 2.5/2) fine sandy loam, weak granular structure, loose consistence, moist. Duff/topsoil.	
7" – 16"	Strong brown (7.5YR 4/6) gravelly loamy fine sand, no structure (single grain), loose consistence, moist. 10-15% gravel.	
16" – 28"	Brown (7.5YR 4/3) gravelly loamy sand, no structure (single grain), friable consistence, moist. 15% gravel.	
28" – 45"	Brown (10YR 4/3) gravelly sand, no structure (single grain), friable consistence, moist. 15% gravel. Wavy bedrock boundary – 22" only in the northwestern portion of the pit, trending northeast and downward in the soil profile.	

Bedrock at 22" in a portion of the pit. No seasonal high groundwater indicators to depth.

Test Pit TP-110

0" – 8"	Dark brown (7.5YR 3/4) very fine sandy loam, weak granular structure, loose consistence, dry.
	Topsoil.
8" – 16"	Strong brown (7.5YR 5/6) fine sandy loam, weak granular structure, loose consistence, dry.
16" – 32"	Strong brown (7.5YR 5/8) very gravelly loamy fine sand, no structure (single grain), loose consistence,
	dry. 40% gravel.
32" – 45"	Dark yellowish brown (10YR 4/6) gravelly fine sand, no structure (single grain), loose consistence,
	dry. 10% gravel, but less gravel deeper in this horizon.
45" – 128"	Dark grayish brown (2.5Y 4/2) gravelly coarse sand, no structure (single grain), loose consistence, dry.
	10% gravel, but less gravel deeper in this horizon. Overdug pit from 64-128 inches, but did not enter.
	Sand to coarse sand present to depth.

No bedrock or seasonal high groundwater indicators to depth.

Hydraulic conductivity test completed at this location, 24-39" below ground surface.

0" – 6"	Dark brown (7.5YR 3/3) gravelly loamy sand, weak granular structure, loose consistence, moist.
	Topsoil/plow layer.
6" – 14"	Strong brown (7.5YR 4/6) very gravelly sand to coarse sand, no structure (single grain), loose
	consistence, moist. 40% gravel.
14" – 29"	Brown (7.5YR 4/4) very gravelly sand, no structure (single grain), loose consistence, moist. 30% gravel.
29" – 57"	Dark yellowish brown (2.5Y 4/4) gravelly coarse sand, no structure (single grain), loose consistence, moist. Wet at 54", seep that became standing water. At the down-slope end of the pit, measured distance to standing water was 41".

No bedrock or seasonal high groundwater indicators to depth. Standing water at 54" (middle of pit) to 41" (down-slope end of pit).

Test Pit TP-112

0" - 10" Dark brown (7.5YR 3/2) very fine sandy loam, weak granular structure, loose consistence, moist. Topsoil/plow layer.
10" - 32" Strong brown (7.5YR 4/6) very gravelly silt loam, weak subangular blocky structure, friable consistence, moist. 50% gravel.
32" - 44" Dark grayish brown (2.5Y 4/2) gravelly silty clay loam, moderate angular blocky structure, firm consistence, moist. Common medium prominent mottles at 32".

No bedrock to depth. Seasonal high groundwater indicators at 32".

Test Pit TP-113

- 0" 9" Dark brown (7.5YR 3/3) silt loam, weak granular structure, loose consistence, moist. Topsoil/plow layer. 9" – 19" Brown (7.5YR 4/4) gravelly silty clay loam, weak subangular blocky structure, friable consistence,
- moist. 10% gravel.
 19" 24" Light olive brown (2.5Y 5/3) silty clay loam, moderate angular blocky structure, firm consistence, moist. Few medium faint mottles at 19".

No bedrock to depth. Seasonal high groundwater indicators at 19".

Test Pit TP-114

0" – 10"	Dark brown (7.5YR 3/2) very fine sandy loam, weak granular structure, loose consistence, moist.
	Topsoil/plow layer.
10" — 18"	Brown (7.5YR 4/4) silt loam, weak granular structure, loose consistence, moist.
18" – 30"	Olive brown (2.5Y 4/3) very gravelly silty clay loam, moderate subangular blocky structure, very firm
	consistence, moist. 40% gravel. Many medium distinct mottles at 18-30".
30" – 68"	Dark olive brown (2.5Y 3/3) Gravelly coarse sand, no structure (single grain), friable consistence,
	moist. 20% gravel. No mottles in this horizon.

No bedrock to depth. Seasonal high groundwater indicators at 18".

0" - 8"Dark brown (7.5YR 3/3) silt loam, weak granular structure, loose consistence, moist. Topsoil/plow
layer.8" - 16"Brown (7.5YR 4/4) gravelly silt loam, weak granular structure, friable consistence, moist.16" - 25"Olive brown (2.5Y 4/4) gravelly silty clay loam, moderate subangular blocky structure, firm
consistence, moist. 40% gravel. Many medium distinct mottles at 16".

No bedrock to depth. Seasonal high groundwater indicators at 16".

Test Pit TP-116

0" – 9"	Dark brown (7.5YR 3/2) fine sandy loam, weak granular structure, loose consistence, moist.
	Topsoil/plow layer.
9" – 18"	Brown (7.5YR 4/4) loamy fine sand, no structure (single grain), loose consistence, moist.
18" - 28"	Dark yellowish brown (10YR 4/6) loamy sand, no structure (single grain), friable consistence, moist.
28" – 36"	Dark olive brown (2.5Y 3/3) very fine sand, moderate subangular blocky structure, firm consistence,
	moist. Many medium prominent mottles at 28-36".
36" – 70"	Olive brown (2.5Y 4/3) sand, no structure (single grain), friable consistence, moist. No mottles in this
	horizon.
70" – 84"	Olive brown (2.5Y 4/3) gravelly clay loam, structure not recorded, firm consistence, moist. Many
	medium distinct mottles in this horizon.

No bedrock to depth. Seasonal high groundwater indicators at 28-36" and 70".

O:\Proj-13\WRM\13-224 Westford WW Capacity Eval\Project Reports\Draft\Jackson Farm\Soil test pit logs 2014 08 04.docx

Site Capacity Confirmation and Project Financing Options for Community Wastewater System at the Jackson Farm Property, Westford, Vermont – Backhoe Test Pit Logs

Soils investigation conducted by Amy Macrellis of Stone Environmental, Inc. on November 17, 2016. Backhoe supplied by John Roberts of Roberts Excavation Inc. Others present during some or all of the investigation included David Gauthier (property owner), Melissa Manka (Town of Westford Planning Coordinator), Kevin Camara (Green Mountain Engineering), Mary Clark (Vermont DEC, Indirect Discharge Permitting Program), and Jessanne Wyman (Vermont DEC, Regional Engineer).

Test pits were located using survey-quality GPS prior to excavation, in order to precisely locate the new test pits relative to work completed previously on this property. The preliminary numbering system used on the day of testing included some numbers that duplicated the identification scheme previously used by Donald J. Hamlin Consulting Engineers in their early 2015 investigation of this area. Thus, the descriptions below include both the test pit numbering scheme used during the field investigation, and the final test pit numbering that eliminates duplicate IDs.

"Zone 3" Hay Field

Test Pit TP-117 (TP-025 on day of testing)

0" - 11"	Very dark brown (7.5YR 2.5/3) gravelly fine sandy loam, weak granular structure, loose consistence,
	moist. Topsoil/plow layer. ~5% gravel.
11" - 18"	Strong brown (7.5YR 5/6) gravelly loamy fine sand, weak granular structure, loose consistence, moist.
18" – 27"	Yellowish brown (10YR 5/8) loamy fine sand, weak blocky structure, friable consistence, moist.
27" – 34"	Light olive brown (2.5Y 5/4) clay loam, weak platy structure, friable consistence, moist. Few medium
	faint mottles throughout the horizon.

No bedrock to depth. Seasonal high groundwater indicators at 27" (Stone determination); DEC representatives estimated seasonal high groundwater at 25".

Test Pit TP-118 (TP-026 on day of testing)

0" – 9"	Very dark brown (7.5YR 2.5/2) fine sandy loam, weak granular structure, loose consistence, moist.
	Topsoil/plow layer.
9" — 14"	Light brown (7.5YR 6/3) gravelly very fine sandy loam, weak granular structure, friable consistence,
	moist.
14" – 18"	Strong brown (7.5YR 5/6) gravelly fine sand, weak blocky structure, friable consistence, moist. $\sim 10\%$
	gravel.
18" – 32"	Yellowish brown (10YR 5/6) fine sand, single grain structure, friable consistence, moist. Gradually
	becomes stony and with firmer consistence between 26" and 32".
32" – 44"	Olive brown (2.5Y 4/4) clay loam, moderate platy structure, firm consistence, moist. Many medium
	faint mottles throughout the horizon.

No bedrock to depth. Seasonal high groundwater indicators at 32" (Stone determination); DEC representatives estimated seasonal high groundwater at 29" in the northern end of the excavation.

Test Pit TP-119 (TP-027 on day of testing)

- 0" 8" Dark brown (7.5YR 3/3) fine sandy loam to silt loam, weak granular structure, loose consistence, moist. Topsoil.
- 8" 16" Brown (7.5YR 4/4) gravelly loamy fine sand, single grain structure, loose consistence, moist. 15-20% gravel.

- 16" 69" Brown (7.5YR 4/4) gravelly coarse sand to very coarse sand, single grain structure, loose consistence, moist. 15-20% gravel, 5% cobbles.
- 69" 120" Overdug pit, but did not enter. Sand to coarse sand present to depth.

No bedrock or seasonal high groundwater indicators to depth. A lens of light olive brown (2.5Y 5/4) clay loam was present at the north end of the excavation to approximately 18" below ground surface, but no indicators of seasonal high groundwater were present in this material.

Test Pit TP-120 (TP-028 on day of testing)

0" – 12"	Dark brown (7.5YR 3/3) silt loam, weak granular structure, loose consistence, moist. Topsoil/plow
	layer.
12" - 17"	Strong brown (7.5YR 4/6) gravelly very fine sandy loam, weak blocky structure, friable consistence,
	moist.
17" – 31"	Light olive brown (2.5Y 5/4) silt loam, weak blocky structure, friable consistence, moist. Few fine
	faint mottles present at 24".
31" – 34"	Light olive brown (2.5Y 5/3) clay loam, moderate platy structure, firm consistence, moist. Few
	medium faint mottles throughout the horizon.

No bedrock to depth. Seasonal high groundwater indicators at 24".

Test Pit TP-121 (TP-029 on day of testing)

0" – 9"	Dark brown (7.5YR 3/3) silt loam, weak granular structure, loose consistence, moist. Topsoil/plow
	layer.
9" – 15"	Strong brown (7.5YR 4/6) gravelly sandy clay loam, weak blocky structure, friable consistence, moist.
15" – 24"	Light olive brown (2.5Y 5/4) silty clay loam, weak blocky structure, friable consistence, moist. Few
	fine faint mottles present at 20".
24" – 37"	Dark grayish brown (2.5Y 4/2) clay loam, moderate platy structure, firm consistence, moist. Few
	medium faint mottles throughout the horizon.

No bedrock to depth. Seasonal high groundwater indicators at 20".

Test Pit TP-122 (TP-030 on day of testing)

0" – 8"	Dark brown (7.5YR 3/3) loamy fine sand, weak granular structure, loose consistence, moist. Topsoil.
8" – 24"	Brown (7.5YR 4/4) gravelly fine sand to sand, single grain structure, loose consistence, moist. \sim 5%
	gravel.
24" <i>–</i> 65"	Brown (2.5Y 5/2) gravelly sand to coarse sand, single grain structure, loose consistence, moist. 5-10%
	gravel and cobbles.
65" – 120"	Overdug pit, but did not enter. Coarse sand present to depth.

No bedrock or seasonal high groundwater indicators to depth.

Test Pit TP-123 (TP-031 on day of testing)

0" - 7"	Dark brown (7.5YR 3/3) gravelly loamy fine sand, weak granular structure, loose consistence, moist.
	Topsoil. ~5% gravel.
7" – 36"	Strong brown (7.5YR 4/6) gravelly coarse sand to very coarse sand, single grain structure, loose
	consistence, moist. \sim 5% gravel, few cobbles.
36" – 58"	Brown (7/5 VR 4/3) gravelly sand to coarse sand single grain structure loose consistence moist 5 -

36" – 58" Brown (7/5 YR 4/3) gravelly sand to coarse sand, single grain structure, loose consistence, moist. 5-10% gravel, increasing with depth. 58" – 64" Olive brown (2.5Y 4/3) silty clay, weak platy structure, firm consistence, moist. Few fine faint mottles throughout the horizon.

No bedrock to depth. Seasonal high groundwater indicators at 58".

Test Pit TP-124 (TP-032 on day of testing)

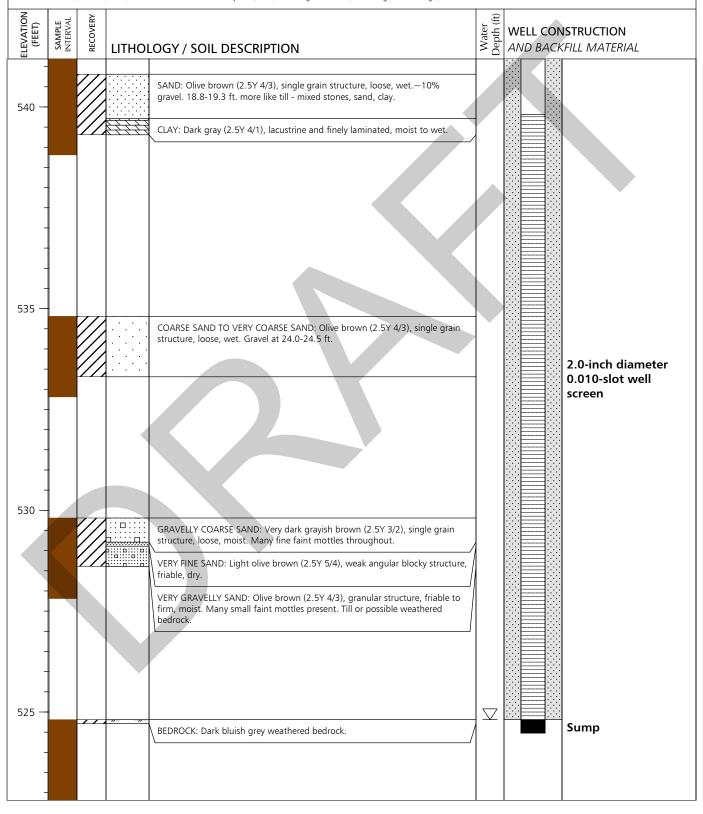
0" - 8" Dark brown (7.5YR 3/3) gravelly loamy sand, weak granular structure, loose consistence, moist. Topsoil with many roots.
8" - 24" Brown (7.5YR 4/4) gravelly sand to coarse sand, single grain structure, loose consistence, moist. ~10% gravel and cobbles.
24" - 36" Strong brown (7/5YR 5/6) gravelly fine sand, single grain structure, friable consistence, extremely dry. ~30% gravel.
36" - 84" Light yellowish brown (2.5Y 6/3) very gravelly fine sand, single grain structure, friable to firm consistence, extremely dry. ~50% gravel.

No bedrock or seasonal high groundwater indicators to depth (96" at uphill/western end of the excavation).

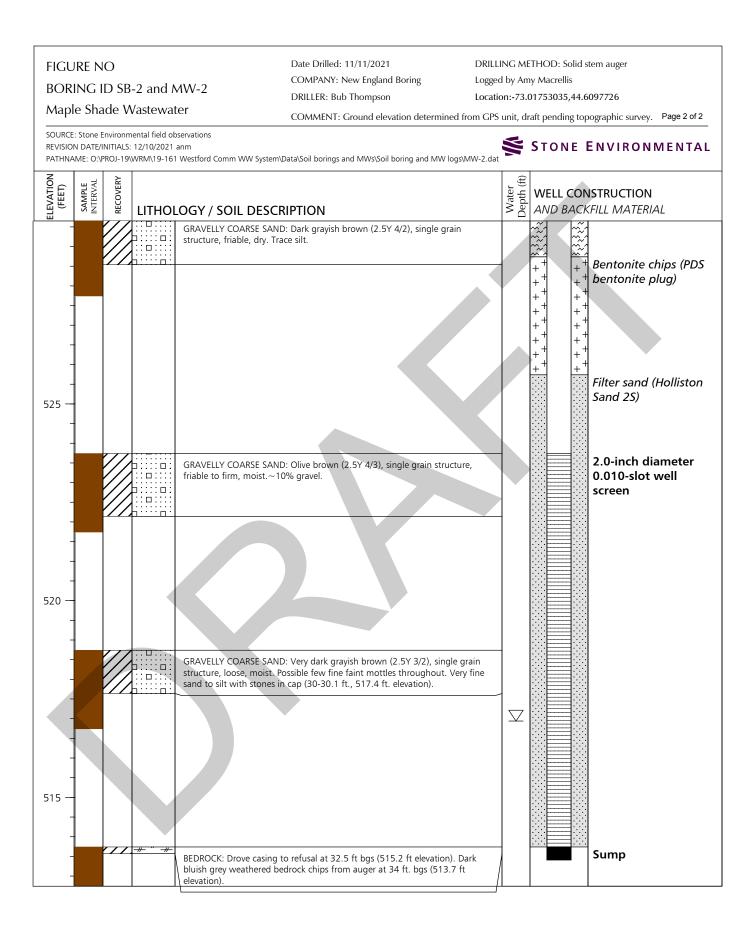
Attachment 2: Soil Boring and Monitoring Well Logs

Date Drilled: 11/11/2021 DRILLING METHOD: Solid stem auger **FIGURE NO** COMPANY: New England Boring Logged by Amy Macrellis BORING ID SB-1 and MW-1 DRILLER: Bub Thompson Location:-73.01729928,44.61052559 Maple Shade Wastewater COMMENT: Ground elevation determined from GPS unit, draft pending topographic survey. Page 1 of 2 SOURCE: Stone Environmental field observations 🗲 STONE ENVIRONMENTAL REVISION DATE/INITIALS: 12/14/2021 anm PATHNAME: O:\PROJ-19\WRM\19-161 Westford Comm WW System\Data\Soil borings and MWs\Soil boring and MW logs\MW-1.dat (FEET) Water Depth (ft) SAMPLE INTERVAL RECOVERN WELL CONSTRUCTION AND BACKFILL MATERIAL LITHOLOGY / SOIL DESCRIPTION Metal road box Concrete seal :0 GRAVELLY FINE SAND: Dark brown (7.5YR 3/3), granular structure, loose consistence, dry. Topsoil. ~10% rock fragments. Elevation, top of 3,3, :: . : : : 🗆 casing: 558.6 ft. GRAVELLY SAND: Strong brown (7.5YR 4/6), single grain structure, loose, dry. Spodic horizon present. Native backfill GRAVELLY COARSE SAND: Dark reddish brown (5YR 3/4), single grain structure, loose, moist. ~20% gravel. ∎ : 🗆 GRAVELLY COARSE SAND: Dark yellowish brown (10YR 4/4), single grain structure, loose, moist. ~20% gravel. 555 : 🗆 : GRAVELLY COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose, moist. ~25% gravel. 2.0-inch diameter solid PVC riser GRAVELLY COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose, moist. ~25% gravel. FINE SAND: Olive brown (2.5Y 4/3), single grain structure, friable, moist to П wet. Iron staining on bed faces. GRAVELLY COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose, moist. ~15% gravel. 550 GRAVELLY COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose, moist. ~15% gravel. SAND: Olive brown (2.5Y 4/3), single grain structure, loose, moist. FINE SAND: Olive brown (2.5Y 4/3), single grain structure, loose, moist. Faint iron staining on bed faces. Bentonite chips (PDS + bentonite plug) COARSE SAND: Dark gravish brown (2.5Y 4/2), single grain structure, loose, + moist. + FINE SAND: Olive brown (2.5Y 4/4), weak angular blocky structure, loose, + moist. Few fine bands silt. COARSE SAND: Dark gravish brown (2.5Y 4/2), single grain structure, loose, wet. FINE SAND: Olive brown (2.5Y 4/4), single grain structure, loose, wet. Finely 545 bedded. No redoximorphic features. + COARSE SAND: Dark olive brown (2.5Y 3/3), single grain structure, loose, wet. + + VERY FINE SAND: Olive brown (2.5Y 4/4), fining down to clay at 13.5 feet + bgs. Clay is moist to wet, plastic, finely laminated. +CLAY: Dark gray (2.5Y 4/1), lacustrine and finely laminated, moist to wet. ++CLAY: Dark gray (2.5Y 4/1), lacustrine and finely laminated, moist to wet. Few Filter sand (Holliston 1/2" bands sand. Clay is plastic. Where laminae could be separated, few fine Sand 2S) faint mottles were present.

FIGURE NO BORING ID SB-1 and MW-1 Maple Shade Wastewater


Date Drilled: 11/11/2021 COMPANY: New England Boring DRILLER: Bub Thompson DRILLING METHOD: Solid stem auger Logged by Amy Macrellis Location:-73.01729928,44.61052559

🗲 STONE ENVIRONMENTAL


COMMENT: Ground elevation determined from GPS unit, draft pending topographic survey. Page 2 of 2

SOURCE: Stone Environmental field observations REVISION DATE/INITIALS: 12/14/2021 anm

PATHNAME: O:\PROJ-19\WRM\19-161 Westford Comm WW System\Data\Soil borings and MWs\Soil boring and MW logs\MW-1.dat

Date Drilled: 11/11/2021 DRILLING METHOD: Solid stem auger FIGURE NO COMPANY: New England Boring Logged by Amy Macrellis BORING ID SB-2 and MW-2 DRILLER: Bub Thompson Location:-73.01753035,44.6097726 Maple Shade Wastewater COMMENT: Ground elevation determined from GPS unit, draft pending topographic survey. Page 1 of 2 SOURCE: Stone Environmental field observations 🗲 STONE ENVIRONMENTAL REVISION DATE/INITIALS: 12/10/2021 anm PATHNAME: O:\PROJ-19\WRM\19-161 Westford Comm WW System\Data\Soil borings and MWs\Soil boring and MW logs\MW-2.dat Water Depth (ft) (FEET) SAMPLE INTERVAL RECOVERN WELL CONSTRUCTION AND BACKFILL MATERIAL LITHOLOGY / SOIL DESCRIPTION Metal road box Concrete seal 0110 GRAVELLY LOAMY SAND: Dark brown (7.5YR 3/3), granular structure, loose consistence, moist. Topsoil, many roots. Elevation, top of casing: 547.5 ft. FINE TO MEDIUM SAND: Brown (7.5YR 4/4), single grain structure, loose, moist Native backfill FINE TO MEDIUM SAND: Brown (7.5YR 4/4), single grain structure, loose, moist. 545 0::::0 GRAVELLY SAND: Brown (10YR 4/3), single grain structure, loose, moist. GRAVELLY COARSE SAND: Olive brown (2.5Y 4/3), single grain structure, loose, moist. ~30% gravel. Coarse to very coarse sand. 2.0-inch diameter solid PVC riser GRAVELLY COARSE SAND: Olive brown (2.5Y 4/3), single grain structure, friable, dry. ~25% gravel. Coarse to very coarse sand. Dense until disturbed. П 540 GRAVELLY COARSE SAND: Olive brown (2.5Y 4/3), single grain structure, friable, dry. ~25% gravel. As above. GRAVELLY COARSE SAND: Olive brown (2.5Y 4/3), single grain structure, friable, dry. ~25% gravel. As above. : [] : : VERY GRAVELLY COARSE SAND: Very dark grayish brown (2.5Y 3/2), single grain structure, friable, wet. ~60% rock fragments. 535 GRAVELLY COARSE SAND: Dark gravish brown (2.5Y 4/2), single grain structure, friable, wet. Coarse to very coarse sand. Trace silt, increasing silt/clay with depth. Possible many medium distinct mottles throughout primarily Fe staining. VERY GRAVELLY COARSE SAND: Very dark gravish brown (2.5Y 3/2), single grain structure, friable, wet. ~60% rock fragments. GRAVELLY COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, friable, wet. Coarse to very coarse sand. Trace silt. GRAVELLY COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, friable, wet. Trace silt. Decreasing moisture with depth. 530

FIGURE NO

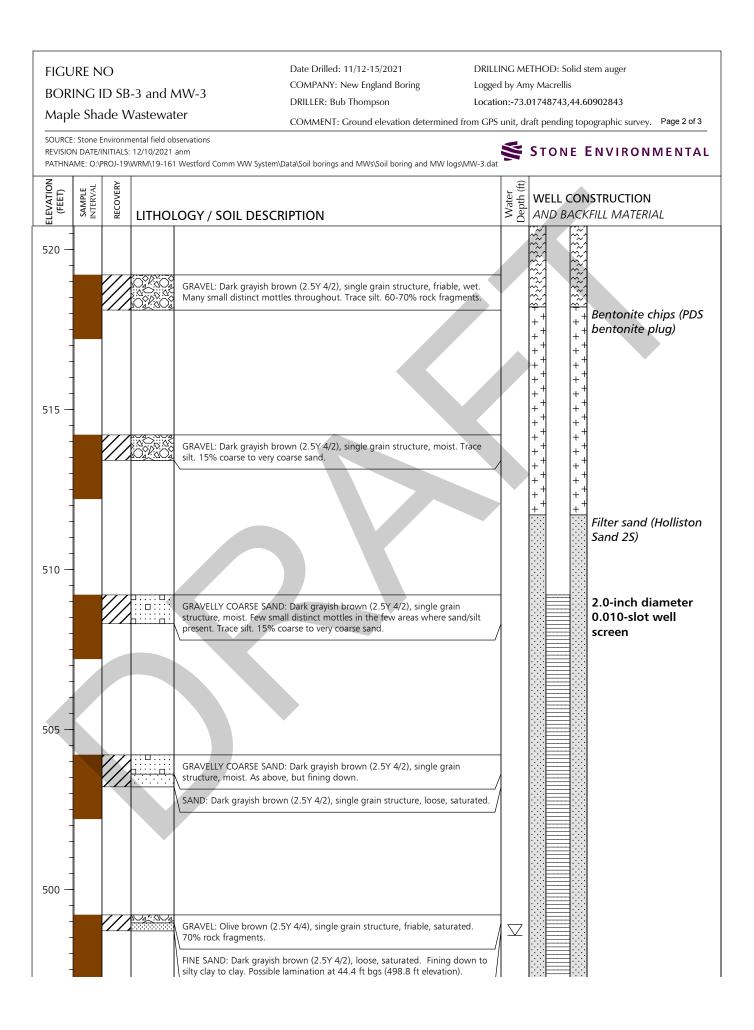
BORING ID SB-3 and MW-3

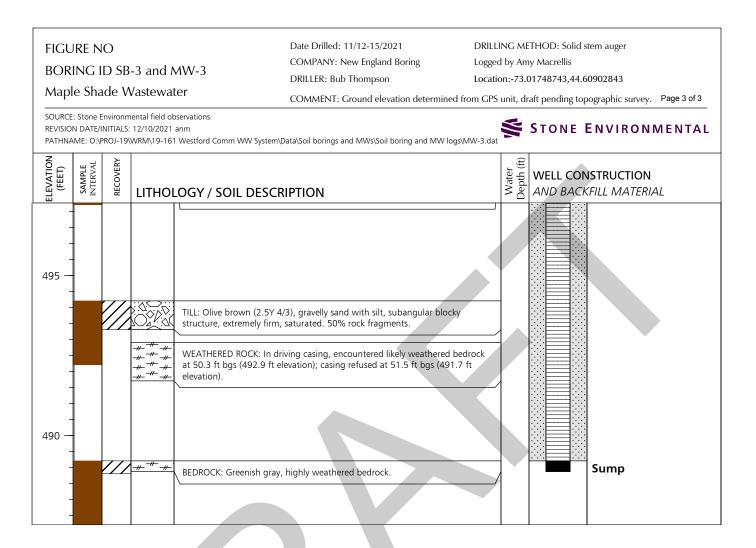
Maple Shade Wastewater

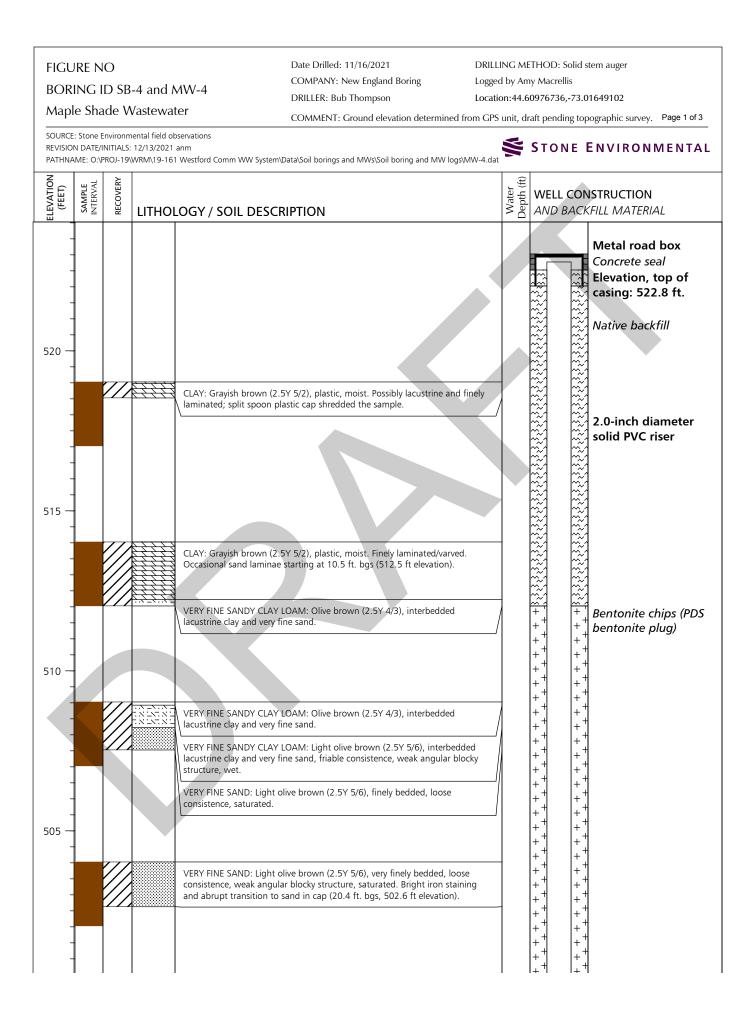
SOURCE: Stone Environmental field observations

COMPANY: New England Boring DRILLER: Bub Thompson

Date Drilled: 11/12-15/2021


DRILLING METHOD: Solid stem auger Logged by Amy Macrellis Location:-73.01748743,44.60902843


COMMENT: Ground elevation determined from GPS unit, draft pending topographic survey. Page 1 of 3


REVISION DATE/INITIALS: 12/10/2021 anm PATHNAME: O:\PROJ-19\WRM\19-161 Westford Comm WW System\Data\Soil borings and MWs\Soil boring and MW logs\MW-3.dat

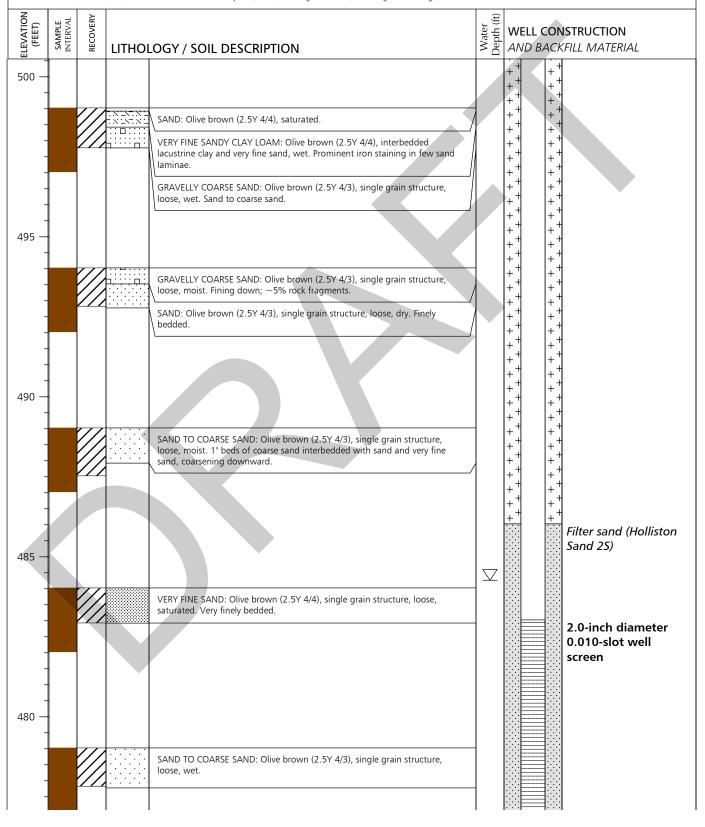
STONE ENVIRONMENTAL

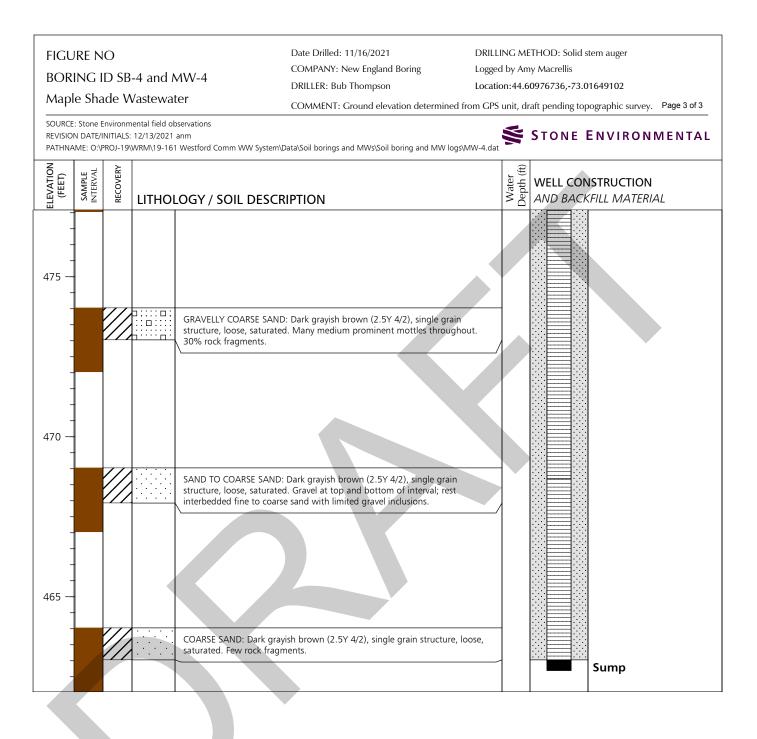
ELEVATION (FEET)	SAMPLE INTERVAL	RECOVERY	LITHO	OGY / SOIL DESCRIPTION	Water Depth (ft)		NSTRUCTION KFILL MATERIAL
540 - 535 -	SAL			GRAVELLY LOAMY SAND: Dark brown (7.5YR 3/3), single grain structure, loose consistence, moist. Topsoil, many roots. GRAVELLY SAND: Yellowish brown (10YR 5/4), single grain structure, loose, moist. Sand to coarse sand; ~5% gravel. GRAVELLY SAND: Dark yellowish brown (10YR 4/6), single grain structure, loose, moist. Sand to coarse sand; ~5-10% gravel. SAND TO COARSE SAND: Light olive brown (2.5Y 5/4), single grain structure, loose, moist. SAND TO COARSE SAND: Very dark grayish brown (2.5Y 3/2), single grain structure, loose, moist. SAND TO COARSE SAND: Very dark grayish brown (2.5Y 3/2), single grain structure, loose, moist. SAND TO COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose, moist. SAND TO COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose, moist. SAND TO COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose, moist. SAND TO COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose, moist. SAND TO COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose, moist. GRAVELLY SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose, dry. ~5-10% gravel. Band of finely bedded fine sand at 9.4-9.5 ft bgs (533.8 ft. elevation).	Dep	AND BAC	KFILL MATERIAL Metal road box Concrete seal Elevation, top of casing: 543.0 ft. Native backfill 2.0-inch diameter solid PVC riser
530 -				 GRAVELLY COARSE SAND: Very dark grayish brown (2.5Y 3/2), single grain structure, friable consistence, moist. ~5% rock fragments. GRAVELLY COARSE SAND: Dark grayish brown (2.5Y 4/2), single grain structure, loose to friable, dry. ~5-10% gravel. FINE SAND: Olive brown (2.5Y 4/3), single grain structure, friable, moist (likely from drilling). GRAVELLY SAND: Very dark grayish brown (2.5Y 3/2), single grain structure, friable consistence, dry. Sand to coarse sand. ~30% rock fragments. COARSE SAND: Grayish brown (2.5Y 5/2), single grain structure, loose, dry. FINE SAND: Olive brown (2.5Y 4/3), single grain structure, loose, dry. FINE SAND: Olive brown (2.5Y 4/3), single grain structure, friable, moist. Fine sand to sand. GRAVELLY COARSE SAND: Olive brown (2.5Y 4/3), single grain structure, friable, dry. Sand to coarse sand. ~30% rock fragments. Iron staining. SAND: Olive brown (2.5Y 4/3), single grain structure, loose, wet. Trace silt. GRAVELLY COARSE SAND: Olive brown (2.5Y 4/3), single grain structure, friable, moist to dry. Few fine distinct mottles throughout. Trace silt. SAND: Olive brown (2.5Y 4/3), single grain structure, loose, wet. Trace silt. GRAVELLY COARSE SAND: Olive brown (2.5Y 4/3), single grain structure, friable, moist to dry. Few fine distinct mottles throughout. Trace silt. 			

FIGURE NO

BORING ID SB-4 and MW-4

Maple Shade Wastewater


Date Drilled: 11/16/2021 COMPANY: New England Boring DRILLER: Bub Thompson DRILLING METHOD: Solid stem auger Logged by Amy Macrellis Location:44.60976736,-73.01649102


🗲 STONE ENVIRONMENTAL

COMMENT: Ground elevation determined from GPS unit, draft pending topographic survey. Page 2 of 3

SOURCE: Stone Environmental field observations REVISION DATE/INITIALS: 12/13/2021 anm

PATHNAME: O:\PROJ-19\WRM\19-161 Westford Comm WW System\Data\Soil borings and MWs\Soil boring and MW logs\MW-4.dat

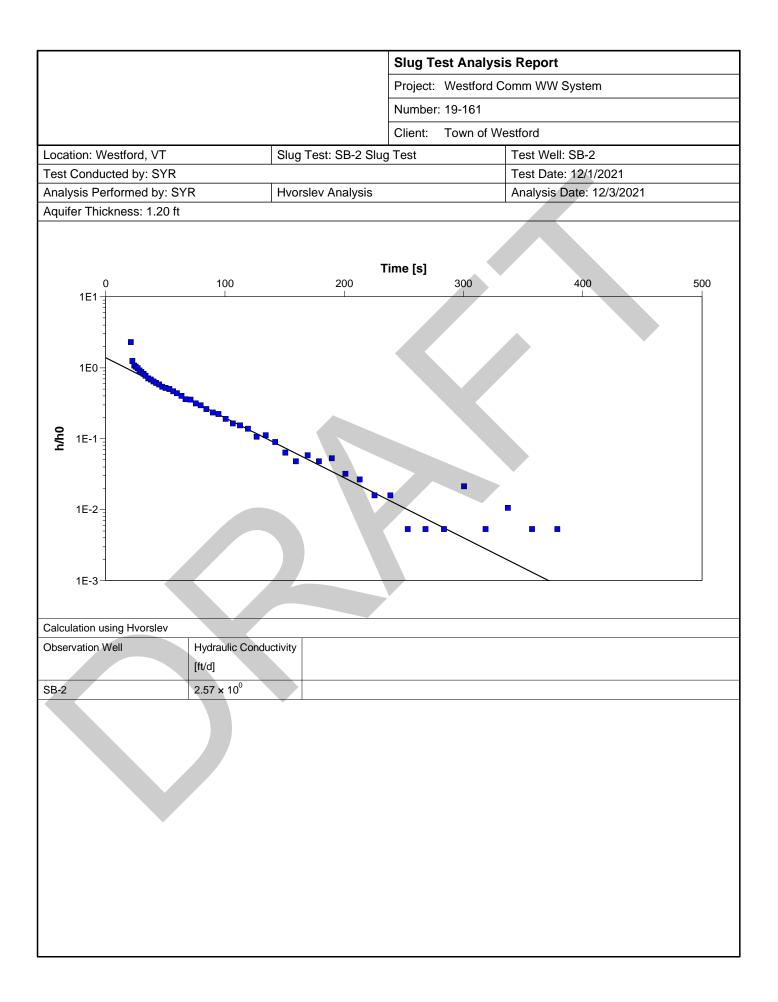
Attachment 3: Hydraulic Conductivity Testing Results

Calculations:

Project Title: Westford Town Center Wastewater - Jackson Farm Evaluation Stone Project #: 13-224 Date: 8/4/2015 Sampling Personnel: Amy Macrellis, David Gauthier, Melissa Manka Backhoe test pit #: 110 Auger hole radius: 1.5" (3.8 cm) Auger hole depth: 15" (38 cm) (test run at 24-39" below ground surface)

Field Measurements:

Run	Time (t)		Volume (v)	Δv	Flow Rate (Q _e)	K = hydraulic conductivity (cm/sec)
	seconds		Liters		cm³/sec	$L_w =$ wetted length of auger hole (cm)
1	0		11			$r_w = radius of auger hole (cm)$
	10	10	10	1	100	S _i = vertical distance from bottom of
	23	13	9	1	77	auger hole to impeding layer (cm)
	35	12	8	1	83	$Q_e = equilibrium rate of water added$
	50	15	7	1	67	$(\text{cm}^3/\text{sec}) = \text{average } \Delta v / \Delta t \text{ for last run}$
	61	11	6	1	91	
	72	11	5	1	91	O L L^2
	86	14	4	1	71	$K = \frac{Q_c}{\left[\ln\left(\frac{L_w}{\omega} + \left \left(\frac{L_w^2}{\omega} - 1\right)\right) - 1\right]\right]}$
	100	14	3	1	71	$K = \frac{Q_e}{2\Pi L_w^2} \left[\ln\left(\frac{L_w}{r_w} + \sqrt{\frac{L_w^2}{r_w^2} - 1}\right) - 1 \right]$
2	159		14			
	165	6	13	1	167	Accuration have meeted by a was not
	178	13	12	1	77	Assumption: Impermeable layer was not
	190	12	11	1	83	encountered; distance from bottom of auger
	201	11	10	1	91	hole to top of impermeable layer is more than
	214	13	9	1	77	2x the wetted length (impermeable assumed at
	228	14 12	8	1	71	bottom of test pit, 128 inches bgs).
	241	13	7	1	77	Pasulta
	255	14 12	6	1	71 77	Results:
	268	13	5			$L_w = 38 \text{ cm}$
	281	13	4	1	77	$r_{\rm w} = 3.8 {\rm cm}$
	293	12	3	1	83	$S_i = 226 \text{ cm}_2$
3	346		15			$Q_e = 75 \text{ cm}^3/\text{sec}$
	360	14	14	1	71	
	372	12	13	1	83	K = 0.0243 cm/sec
	386	14	12	1	71	69 ft/day
	400	14	11	1	71	
	413	13	10	1	77	
	424	11	9	1	91	
	438	14	8	1	71	
	452 466	14	7	1 1	71	
	466 478	14 12	6 5	1 1	71 83	
	478 492	12 14	5 4	1	83 71	
	492 506	14 14	4 3	1 1	71	
	200	14	J	1	/ 1	

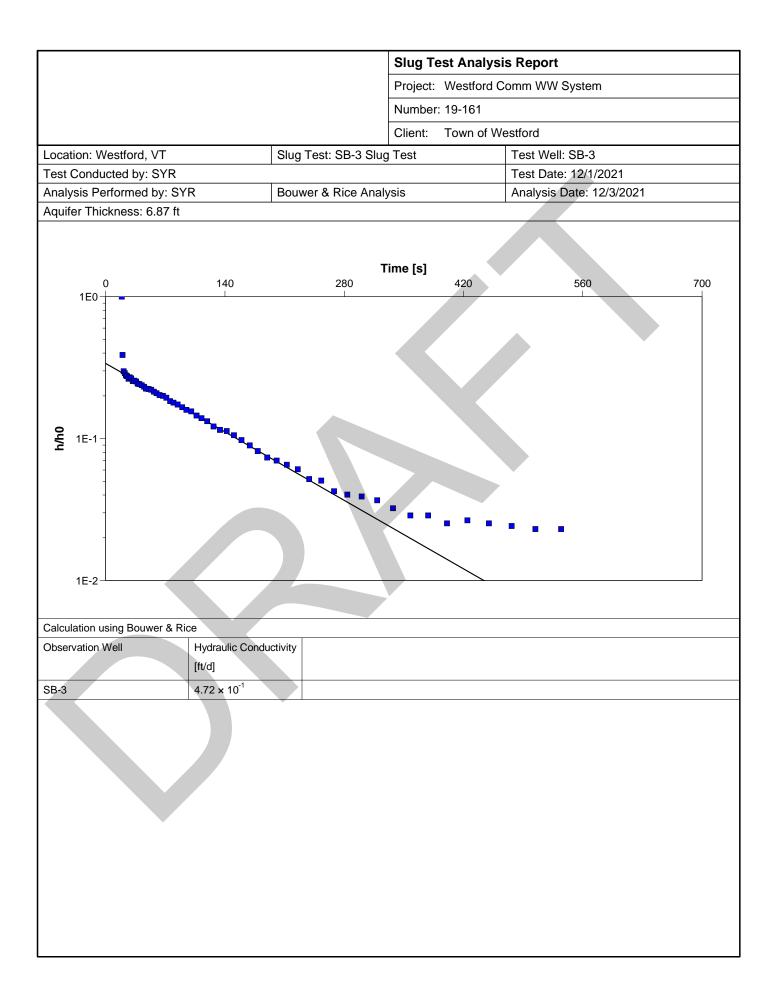

Path: O:\Proj-13\WRM\13-224 Westford WW Capacity Eval\Data\KTestCalcs.xls 8/7/2015 anm

STONE ENVIRONMENTAL, INC.

				Slug Test - W	ater Level Data	Page 1 of 3	
				Project: Westfe	ord Comm WW System		
				Number: 19-16	1		
					of Westford		
1 1							
Locatio	on: Westford, VT		Slug Test: SB-2 Slug	ug Test Vell: SB-2			
Test Co	onducted by: SYR		Test Date: 12/1/2021	l			
Water I	level at t=0 [ft]: 30.99)	Static Water Level [ff	t]: 30.80	Water level change at t	=0 [ft]: 0.19	
	Time	Water Leve		•			
	[s]	[ft]	[ft]				
1	00.251	30.803 30.805	0.001				
2	0.251	30.805	0.003				
4	0.882	30.803	0.001				
5	1.005	30.80	-0.002				
6	1.251	30.805	0.002				
7	1.501	30.801	-0.001				
8	1.845	30.802	0.00				
9	2.001	30.801	-0.001				
10	2.251	30.803	0.001				
11	2.501	30.801	-0.001				
12	2.751	30.805	0.003				
13	3.001	30.803	0.001				
14	3.251	30.802	0.00				
15	3.501	30.803	0.001				
16	3.751	30.80	-0.002		·		
17	4.001	30.802	0.00				
18	4.251	30.802	0.00				
19	4.501	30.80	-0.002				
20	4.751	30.804	0.002				
21 22	5.001	30.804	0.002				
22	5.251 5.501	30.803 30.801	0.001				
23	5.751	30.803	0.001				
25	6.001	30.801	-0.001				
26	6.361	30.804	0.002				
27	6.721	30.801	-0.001				
28	7.141	30.801	-0.001				
29	7.561	30.80	-0.002				
30	7.981	30.804	0.002				
31	8.461	30.802	0.00				
32	9.055	30.801	-0.001				
33	9.481	30.80	-0.002				
34	10.081	30.802	0.00				
35	10.681	30.799	-0.003				
36	11.281	30.804	0.002				
37	11.94	30.801	-0.001				
38 39	12.66 13.44	30.803 30.804	0.001				
<u> </u>	13.44	30.804	0.002				
40	15.061	30.803	0.001				
41	15.961	30.803	0.001				
43	16.92	30.803	0.001				
44	17.88	30.796	-0.006				
45	19.089	30.799	-0.003				
46	20.101	30.795	-0.007				
47	21.301	30.371	-0.431				
48	22.561	30.569	-0.233				

				Slug Test - Water Level Data Page 2 of 3
				Project: Westford Comm WW System
				Number: 19-161
				Client: Town of Westford
	Time [s]	Water Level [ft]	WL Change [ft]	e
49	24.102	30.60	-0.202	
50	25.321	30.607	-0.195	
51	26.821	30.617	-0.185	
52	28.38	30.63	-0.172	
53	30.061	30.637	-0.165	
54	31.86	30.647	-0.155	
55	33.721	30.657	-0.145	
56	35.761	30.668	-0.134	
57	37.86	30.673	-0.129	
58	40.08	30.682	-0.12	
59	42.481	30.687	-0.115	
60	45	30.692	-0.11	
61	47.64	30.70	-0.102	
62	50.461	30.704	-0.098	
63	53.461	30.707	-0.095	
64	56.64	30.714	-0.088	
65	60	30.72	-0.082	
66	63.6	30.726	-0.076	
67	67.2	30.734	-0.068	
68	71.4	30.735	-0.067	
69	75.6	30.743	-0.059	
70	79.8	30.746	-0.056	
71	84.6	30.753	-0.049	
72	90	30.758	-0.044	
73	94.8	30.76	-0.042	
74	100.8	30.766	-0.036	
75	106.8	30.771	-0.031	
76	112.8	30.773	-0.029	
77	119.4	30.776	-0.026	
78	126.6	30.782	-0.02	
79	134.4	30.781	-0.021	
80	142.2	30.785	-0.017	
81	150.6	30.79	-0.012	
82	159.6	30.793	-0.009	
83	169.39	30.791	-0.011	
84	178.8	30.793	-0.009	
85	189.6	30.792	-0.01	
86	201	30.796	-0.006	
87	213	30.797	-0.005	
88	225.6	30.799	-0.003	
89	238.8	30.799	-0.003	
90	253.2	30.803	0.001	——
91 92	268.2 283.8	30.801	-0.001	
92 93	300.6	30.803 30.798	0.001	
93			-0.004	
94 95	318.6 337.2	30.803 30.80	-0.002	—
96 97	357.6 378.6	30.803 30.801	0.001	
97	400.8	30.801	-0.001	—
98		30.802	0.00	
99 100	424.8 450	30.991	0.189	
100	450 476.4	30.926	0.124	—
101	470.4	30.003	0.061	

				Slug Test - Water Level Data Page 3 of
				Project: Westford Comm WW System
				Number: 19-161
				Client: Town of Westford
	Time	Water Level	WL Change	je
	[s]	[ft]	[ft]	
102	504.832	30.853	0.051	
103	534.865	30.834	0.032	
104	566.4	30.824	0.022	
105	600	30.818	0.016	,
106	636	30.813	0.011	
107	672	30.812	0.01	
108	714	30.811	0.009	
109	756	30.807	0.005	
110	798	30.701	-0.101	
111	846	30.757	-0.045	
112	900	30.786	-0.016	
113	948	30.796	-0.006	
114	1008	30.80	-0.002	
115	1068	30.801	-0.001	
116	1128	30.80	-0.002	
117	1188	30.939	0.137	
118	1248	30.852	0.05	
119	1308	30.818	0.016	
120	1368	30.811	0.009	
121	1428	30.806	0.004	
122	1488	30.805	0.003	
123	1548	30.804	0.002	

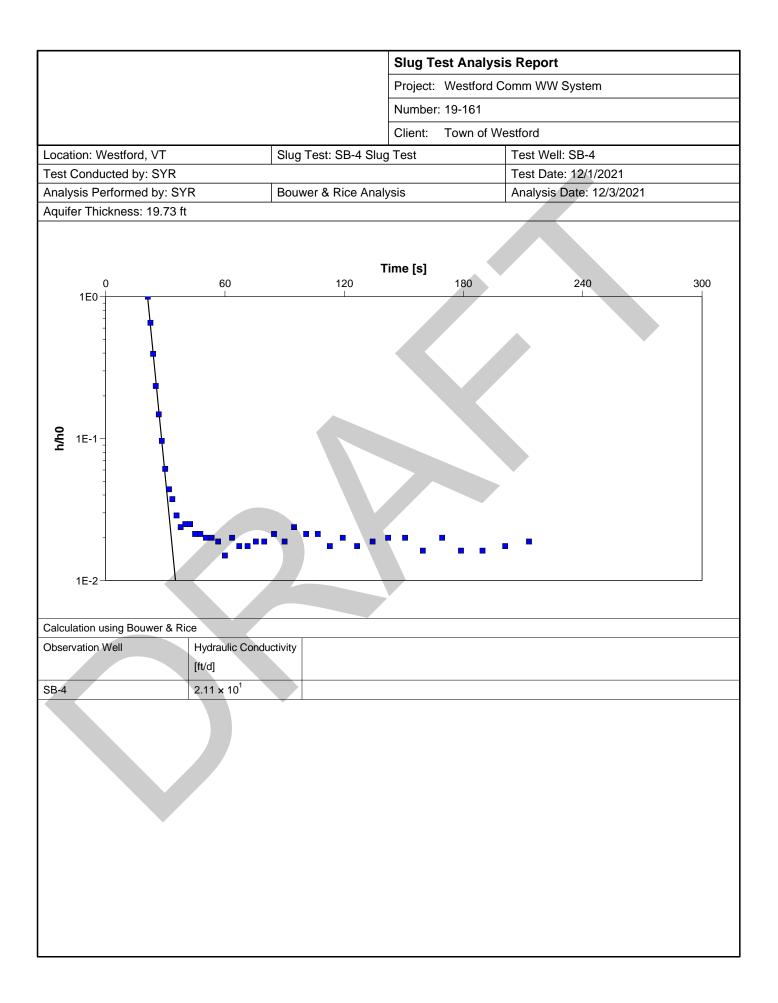


					Siug le	st - Analy	ses Re	P • · · •		
					Project:	Westford C	comm W	/W System	1	
					Number:	19-161				
					Client:	Town of W	estford			
Loc	ation: Westford, VI	T	Slug Test: S	B-2 Slug	Test		Test V	Vell: SB-2		
Tes	t Conducted by: S	/R					Test D	Date: 12/1/2	2021	
٩qu	uifer Thickness: 1.2	O ft								
	Analysis Name	Analysis Performed	bAnalysis Date	Method I	name	Well		T [ft²/d]	K [ft/d]	S
1	Hvorslev Analysis	SYR	12/3/2021	Hvorslev	,	SB-2			2.57 × 10 ⁰	
						K				

				Slug Test - Wate	r Level Data Page 1 of 3		
				Project: Westford	Comm WW System		
				Number: 19-161	-		
				Client: Town of V	Vestford		
Locatio	on: Westford, VT		Slug Test: SB-3 Slug	Ig Test Well: SB-3			
Test Co	onducted by: SYR		Test Date: 12/1/2021				
Water	level at t=0 [ft]: 43.76		Static Water Level [ft	1. 44 63	Water level change at t=0 [ft]: -0.87		
Water	Time	Water Level		-			
	[s]	[ft]	[ft]				
1	0	44.628	-0.002				
2	0.251	44.627	-0.003				
3	0.501	44.628	-0.002				
4	0.863	44.631	0.001				
5	1.001	44.632	0.002				
6	1.251	44.626	-0.004				
7	1.501	44.627	-0.003		× •		
8	1.751	44.628	-0.002				
9	2.001	44.628	-0.002				
10	2.251	44.626	-0.004		·		
11	2.501	44.629	-0.001				
12	2.751	44.631	0.001				
13	3.001	44.627	-0.003				
14	3.251	44.63	0.00				
15	3.501	44.628	-0.002				
16	3.751	44.627	-0.003				
17	4.001	44.627	-0.003				
18	4.251	44.63	0.00				
19	4.501	44.625	-0.005				
20	4.751	44.628	-0.002				
21	5.001	44.629	-0.001				
22	5.251	44.628	-0.002				
23	5.501	44.631	0.001				
24	5.751	44.629	-0.001				
25	6.001	44.628	-0.002				
26	6.361	44.627	-0.003				
27	6.721	44.628	-0.002				
28	7.141	44.628	-0.002				
29	7.577	44.627	-0.003				
30	7.981	44.628	-0.002				
31	8.461	44.63	0.00				
32	9	44.626	-0.004				
33	9.481	44.629	-0.001				
34	10.081	44.626	-0.004				
35	10.681	44.626	-0.004				
36	11.281	44.628	-0.002				
37	11.94	44.628	-0.002				
38	12.66	44.628	-0.002				
39	13.44	44.629	-0.001				
40	14.22	44.627	-0.003				
41	15.061	44.625	-0.005				
42	15.96	44.629	-0.001				
43	16.92	44.623	-0.007				
44	17.88	44.611	-0.019				
45	18.96	43.761	-0.869				
46	20.101	44.293	-0.337				
47	21.301	44.37	-0.26				
48	22.561	44.379	-0.251				

Project: Westford Comm WW System Number: 19-161 Client: Town of Westford 49 23.88 44.387 -0.243 50 25.321 44.39 -0.243 51 26.821 44.401 -0.229 52 28.38 44.395 -0.231 54 31.86 44.409 -0.221 55 33.72 44.407 -0.223 56 35.76 44.411 -0.212 58 40.08 44.419 -0.212 58 40.08 44.418 -0.212 58 40.08 44.424 -0.206 60 45 44.428 -0.202 61 47.64 44.438 -0.192 63 53.3.46 44.438 -0.192 64 56.64 44.438 -0.192 64 56.64 44.448 -0.186 65 60 44.456 -0.174 68 71.4	
Client: Town of Westford [s] [ft] [ft] 49 23.88 44.387 -0.243 50 25.321 44.39 -0.243 51 26.821 44.401 -0.229 52 28.38 44.395 -0.235 53 30.061 44.399 -0.231 54 31.86 44.409 -0.223 56 35.76 44.411 -0.219 57 37.86 44.419 -0.221 58 40.08 44.419 -0.211 59 42.56 44.428 -0.202 61 47.64 44.438 -0.194 63 53.46 44.438 -0.192 64 56.64 44.438 -0.192 65 60 44.444 -0.1014 63 53.46 44.438 -0.192 64 56.64 44.438 -0.1174 65 60 44.4454 -0.1176	
Time [s]Water Level [ft]WL Change [ft]4923.8844.387 $\cdot 0.243$ 5025.32144.39 $\cdot 0.244$ 5126.82144.401 $\cdot 0.229$ 5228.3844.395 $\cdot 0.235$ 5330.06144.399 $\cdot 0.221$ 5533.7244.407 $\cdot 0.223$ 5635.7644.411 $\cdot 0.212$ 5737.8644.419 $\cdot 0.212$ 5840.0844.419 $\cdot 0.212$ 5942.5644.424 $\cdot 0.206$ 604544.438 $\cdot 0.196$ 6250.4644.436 $\cdot 0.194$ 6353.4644.438 $\cdot 0.192$ 6456.6444.444 $\cdot 0.186$ 656044.454 $\cdot 0.176$ 6767.244.456 $\cdot 0.174$ 6871.444.461 $\cdot 0.169$ 6975.644.474 $\cdot 0.166$ 707.9.844.474 $\cdot 0.135$ 7184.644.491 $\cdot 0.135$ 7394.844.491 $\cdot 0.135$ 74100.844.495 $\cdot 0.135$ 75106.844.504 $\cdot 0.126$	
$ \mathbf{s} $ $[\mathbf{f} $ $[\mathbf{f} $ 4923.8844.387-0.2435025.32144.39-0.245126.82144.401-0.2295228.3844.395-0.2355330.06144.399-0.2215431.8644.409-0.2235635.7644.411-0.2195737.8644.418-0.2125840.0844.419-0.2115942.5644.424-0.206604544.436-0.1946250.4644.436-0.1926147.6444.436-0.1926250.4644.448-0.186656044.444-0.1866663.644.454-0.1766767.244.456-0.1746871.444.461-0.1696975.644.47-0.1667079.844.474-0.1567184.644.49-0.1357394.844.49-0.13575106.844.504-0.126	
49 23.88 44.387 -0.243 50 25.321 44.39 -0.24 51 26.821 44.401 -0.229 52 28.38 44.395 -0.235 53 30.061 44.399 -0.231 54 31.86 44.409 -0.221 55 33.72 44.407 -0.213 56 35.76 44.411 -0.219 57 37.86 44.418 -0.212 58 40.08 44.419 -0.211 59 42.56 44.424 -0.206 60 45 44.428 -0.202 61 47.64 44.434 -0.196 62 50.46 44.434 -0.196 63 53.46 44.438 -0.192 64 56.64 44.448 -0.182 66 63.6 44.474 -0.168 65 60 44.474 -0.163 68 71.4 44.461 -0.169 69 75.6 44.477 -0.16 70 79.8 44.474 -0.156 71 84.6 44.495 -0.135 75 106.8 44.504 -0.126	
51 26.821 44.401 -0.229 52 28.38 44.395 -0.235 53 30.061 44.399 -0.231 54 31.86 44.409 -0.223 56 35.76 44.411 -0.219 57 37.86 44.418 -0.212 58 40.08 44.419 -0.211 59 42.56 44.424 -0.206 60 45 44.428 -0.202 61 47.64 44.434 -0.196 62 50.46 44.438 -0.192 64 56.64 44.444 -0.186 65 60 44.448 -0.182 66 63.6 44.474 -0.166 67 67.2 44.456 -0.174 68 71.4 44.474 -0.166 70 79.8 44.474 -0.156 71 84.6 44.495 -0.135 73 94.8 44.491 -0.135 74 100.8 44.495 -0.126	
52 28.38 44.395 -0.235 53 30.061 44.399 -0.231 54 31.86 44.409 -0.221 55 33.72 44.407 -0.223 56 35.76 44.411 -0.219 57 37.86 44.418 -0.212 58 40.08 44.419 -0.211 59 42.56 44.424 -0.206 60 45 44.428 -0.202 61 47.64 44.436 -0.194 62 50.46 44.436 -0.194 63 53.46 44.438 -0.192 64 56.64 44.438 -0.182 66 63.6 44.454 -0.166 67 67.2 44.456 -0.174 68 71.4 44.461 -0.169 69 75.6 44.47 -0.156 71 84.6 44.491 -0.139 73 94.8 44.491 -0.139 74 100.8 44.495 -0.135 75 106.8 44.504 -0.126	
53 30.061 44.399 -0.231 54 31.86 44.409 -0.221 55 33.72 44.407 -0.223 56 35.76 44.411 -0.219 57 37.86 44.418 -0.212 58 40.08 44.419 -0.211 59 42.56 44.424 -0.206 60 45 44.428 -0.202 61 47.64 44.438 -0.194 62 50.46 44.438 -0.192 64 56.64 44.438 -0.192 64 56.64 44.448 -0.186 65 60 44.448 -0.182 66 63.6 44.474 -0.166 66 63.6 44.474 -0.169 68 71.4 44.461 -0.156 70 79.8 44.474 -0.156 71 84.6 44.495 -0.135 73 94.8 44.491 -0.139 74 100.8 44.504 -0.126	
54 31.86 44.409 -0.221 55 33.72 44.407 -0.223 56 35.76 44.411 -0.219 57 37.86 44.418 -0.212 58 40.08 44.419 -0.211 59 42.56 44.424 -0.206 60 45 44.428 -0.202 61 47.64 44.434 -0.196 62 50.46 44.438 -0.192 64 56.64 44.438 -0.192 64 56.64 44.454 -0.186 65 60 44.454 -0.176 67 67.2 44.456 -0.174 68 71.4 44.461 -0.169 69 75.6 44.47 -0.16 70 79.8 44.474 -0.156 71 84.6 44.491 -0.139 73 94.8 44.491 -0.135 73 94.8 44.504 -0.126	
55 33.72 44.407 -0.223 56 35.76 44.411 -0.219 57 37.86 44.418 -0.212 58 40.08 44.419 -0.211 59 42.56 44.424 -0.206 60 45 44.428 -0.202 61 47.64 44.434 -0.196 62 50.46 44.436 -0.194 63 53.46 44.438 -0.192 64 56.64 44.444 -0.186 65 60 44.454 -0.176 67 67.2 44.456 -0.174 68 71.4 44.461 -0.169 69 75.6 44.474 -0.166 70 79.8 44.474 -0.156 71 84.6 44.491 -0.139 72 90 44.485 -0.145 73 94.8 44.491 -0.139 74 100.8 44.495 -0.135 75 106.8 44.504 -0.126	
56 35.76 44.411 -0.219 57 37.86 44.418 -0.212 58 40.08 44.419 -0.211 59 42.56 44.424 -0.206 60 45 44.428 -0.202 61 47.64 44.434 -0.196 62 50.46 44.436 -0.194 63 53.46 44.438 -0.192 64 56.64 44.444 -0.186 65 60 44.448 -0.182 66 63.6 44.454 -0.176 67 67.2 44.456 -0.174 68 71.4 44.461 -0.169 69 75.6 44.474 -0.156 71 84.6 44.474 -0.156 71 84.6 44.491 -0.139 74 100.8 44.495 -0.135 75 106.8 44.504 -0.126	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
58 40.08 44.419 -0.211 59 42.56 44.424 -0.206 60 45 44.428 -0.202 61 47.64 44.434 -0.196 62 50.46 44.436 -0.194 63 53.46 44.438 -0.192 64 56.64 44.438 -0.182 66 63.6 44.454 -0.186 65 60 44.454 -0.176 67 67.2 44.456 -0.174 68 71.4 44.461 -0.169 69 75.6 44.47 -0.166 70 79.8 44.474 -0.156 71 84.6 44.479 -0.151 72 90 44.485 -0.145 73 94.8 44.491 -0.139 74 100.8 44.504 -0.126	
59 42.56 44.424 -0.206 60 45 44.428 -0.202 61 47.64 44.434 -0.196 62 50.46 44.436 -0.194 63 53.46 44.438 -0.192 64 56.64 44.444 -0.186 65 60 44.448 -0.182 66 63.6 44.454 -0.176 67 67.2 44.456 -0.174 68 71.4 44.461 -0.169 69 75.6 44.47 -0.16 70 79.8 44.474 -0.156 71 84.6 44.491 -0.139 72 90 44.485 -0.145 73 94.8 44.491 -0.139 74 100.8 44.504 -0.126	
61 47.64 44.434 -0.196 62 50.46 44.436 -0.194 63 53.46 44.438 -0.192 64 56.64 44.444 -0.186 65 60 44.448 -0.182 66 63.6 44.454 -0.176 67 67.2 44.456 -0.174 68 71.4 44.461 -0.169 69 75.6 44.47 -0.166 70 79.8 44.474 -0.156 71 84.6 44.491 -0.139 72 90 44.485 -0.145 73 94.8 44.491 -0.139 74 100.8 44.504 -0.126	
62 50.46 44.436 -0.194 63 53.46 44.438 -0.192 64 56.64 44.444 -0.186 65 60 44.448 -0.182 66 63.6 44.454 -0.176 67 67.2 44.456 -0.174 68 71.4 44.461 -0.169 69 75.6 44.47 -0.16 70 79.8 44.474 -0.156 71 84.6 44.491 -0.139 72 90 44.485 -0.145 73 94.8 44.491 -0.139 74 100.8 44.504 -0.126	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
7184.644.479-0.151729044.485-0.1457394.844.491-0.13974100.844.495-0.13575106.844.504-0.126	
729044.485-0.1457394.844.491-0.13974100.844.495-0.13575106.844.504-0.126	
7394.844.491-0.13974100.844.495-0.13575106.844.504-0.126	
74 100.8 44.495 -0.135 75 106.8 44.504 -0.126	
75 106.8 44.504 -0.126	
76 112.8 44.509 -0.121	
77 119.4 44.515 -0.115	
78 126.6 44.524 -0.106	
79 134.4 44.53 -0.10	
80 142.2 44.532 -0.098	
81 150.6 44.538 -0.092	
82 159.6 44.545 -0.085	
83 169.2 44.552 -0.078	
84 178.8 44.559 -0.071	
85 189.6 44.566 -0.064	
86 201 44.569 -0.061	
87 213 44.573 -0.057	
88 225.6 44.577 -0.053 80 232.8 44.585 0.045	
89 238.8 44.585 -0.045 90 253.2 44.586 -0.044	
90 253.2 44.586 -0.044 91 268.2 44.593 -0.037	
91 268.2 44.593 -0.037 92 283.8 44.595 -0.035	
92 263.6 44.595 -0.035 93 300.6 44.596 -0.034	
94 318.6 44.598 -0.032	
34 310.0 44.550 0.052 95 337.2 44.602 -0.028	
96 357.6 44.605 -0.025	
97 378.6 44.605 -0.025	
98 400.814 44.608 -0.022	
99 424.8 44.607 -0.023	
100 450 44.608 -0.022	
101 476.4 44.609 -0.021	

				Slug Test - Water Level Data Page 3 of
				Project: Westford Comm WW System
			-	Number: 19-161
			-	Client: Town of Westford
	Time	Water Level	WL Change	
	[s]	[ft]	[ft]	
102	504.6	44.61	-0.02	
103	534.6	44.61	-0.02	
104 105	<u> </u>	44.867 44.785	0.237 0.155	
105	636	44.785		
106	672	44.685	0.091	_
107	714	44.656	0.035	
108	756	44.636	0.028	
110	798	44.634	0.004	
111	846	44.627	-0.003	_
112	900	44.622	-0.008	
113	948	44.618	-0.012	
114	1008	44.615	-0.012	
115	1068	44.616	-0.013	
116	1128	44.359	-0.271	
117	1188	44.461	-0.169	
118	1248	44.522	-0.108	_
119	1308	44.56	-0.07	_
120	1368	44.576	-0.054	
121	1428	44.585	-0.045	
122	1488	44.591	-0.039	
123	1548	44.593	-0.037	
124	1608	44.596	-0.034	
125	1668	44.596	-0.034	
126	1728	44.598	-0.032	r
127	1788	44.795	0.165	
128	1848	44.688	0.058	
129	1908	44.643	0.013	
130	1968	44.62	-0.01	
131	2028	44.607	-0.023	<u> </u>
132	2088	44.606	-0.024	
133	2148	44.602	-0.028	<u> </u>



					Slug le	st - Analy	ses Re	P0		
					Project:	Westford C	Comm W	/W System	1	
					Number:	19-161				
					Client:	Town of W	estford			
Loc	ation: Westford, VT		Slug Test: S	SB-3 Slug	Test		Test V	Vell: SB-3		
Tes	t Conducted by: SY	Ŕ					Test D	Date: 12/1/2	2021	
٩qı	ifer Thickness: 6.87	7 ft								1
	Analysis Name	Analysis Performed	oAnalysis Date	Method I	name	Well		T [ft²/d]	K [ft/d]	S
1	Bouwer & Rice Anal	/:SYR	12/3/2021	Bouwer	& Rice	SB-3			4.72 × 10 ⁻¹	
						K				

				Slug Test - Wate	er Level Data Page 1 of 3
				Project: Westford	Comm WW System
				Number: 19-161	
				Client: Town of	Westford
Locatio	on: Westford, VT		Slug Test: SB-4 Slug	lest	Test Well: SB-4
Test C	onducted by: SYR		Test Date: 12/1/2021		
Water	level at t=0 [ft]: 37.96	;	Static Water Level [ft]: 38.76	Water level change at t=0 [ft]: -0.80
	Time	Water Level	WL Change		
	[s]	[ft]	[ft]		
1	0	38.751	-0.009		
2	0.251	38.751	-0.009		
3	0.501	38.753	-0.007		
4	0.751	38.753	-0.007		
5	1.131	38.753	-0.007		
6 7	1.254	38.754	-0.006		
	1.501	38.752	-0.008		
8	1.751	38.755	-0.005		
9	2.001	38.75	-0.01		
10	2.251	38.754	-0.006		
11	2.501	38.753	-0.007	_	
12	2.751	38.752	-0.008	_	
13	3.001	38.751	-0.009		
14	3.251	38.751	-0.009		
15	3.501	38.751	-0.009		
16	3.751	38.752	-0.008	_	
17	4.001	38.752	-0.008		
18	4.251	38.754	-0.006		
19	4.501	38.751	-0.009		
20	4.751	38.752	-0.008		
21 22	5.001	38.752	-0.008		
22	5.251	38.751 38.752	-0.009 -0.008		
23	5.501 5.751				
24 25	6.001	38.752 38.752	-0.008		
25	6.361	38.753	-0.008		
20		38.752			
27	6.721 7.141	38.752	-0.008		
28	7.141	38.754	-0.006		
30	7.981	38.751	-0.008		
31	8.461	38.752	-0.009		
32	9.001	38.755	-0.005		
33	9.481	38.752	-0.008		
34	10.081	38.75	-0.00		
35	10.681	38.752	-0.008		
36	11.281	38.753	-0.007		
37	11.94	38.752	-0.008		
38	12.66	38.752	-0.008		
39	13.44	38.753	-0.007		
40	14.221	38.75	-0.01		
41	15.061	38.749	-0.011		
42	15.96	38.753	-0.007		
43	16.92	38.751	-0.009		
44	17.88	38.751	-0.009		
45	18.96	38.748	-0.012		
46	20.101	38.376	-0.384		
47	21.301	37.961	-0.799		
48	22.561	38.238	-0.522		

				Slug Tes	t - Water Level Data	Page 2 of 3
				Project: V	Vestford Comm WW System	
				Number: 1	9-161	
				Client: T	Fown of Westford	
	Time	Water Level	WL Change			
49	[s] 23.88	[ft] 38.444	[ft] -0.316			
49 50	25.321	38.572	-0.318			
51	26.821	38.642	-0.118			
52	28.38	38.683	-0.077			
53	30.061	38.711	-0.049			
54	31.86	38.725	-0.035			
55	33.721	38.73	-0.03			
56	35.761	38.737	-0.023			
57	37.86	38.741	-0.019			
58	40.08	38.74	-0.02			
59	42.481	38.74	-0.02			
60	45	38.743	-0.017			
61	47.64	38.743	-0.017			
62	50.46	38.744	-0.016			
63	53.46	38.744	-0.016			
64	56.64	38.745	-0.015			
65	60	38.748	-0.012			
66 67	63.6 67.2	38.744	-0.016			
67	71.4	38.746 38.746	-0.014 -0.014			
69	71.4	38.745	-0.014			
70	79.8	38.745	-0.015			
70	84.749	38.743	-0.013			
71	90	38.745	-0.017			
73	94.801	38.741	-0.019			
74	100.8	38.743	-0.017			
75	106.8	38.743	-0.017			
76	112.8	38.746	-0.014			
77	119.4	38.744	-0.016			
78	126.6	38.746	-0.014			
79	134.4	38.745	-0.015			
80	142.2	38.744	-0.016			
81	150.6	38.744	-0.016			
82	159.6	38.747	-0.013			
83	169.2	38.744	-0.016			
84	178.8	38.747	-0.013			
85	189.6	38.747	-0.013			
86	201	38.746	-0.014			
87	213	38.745	-0.015			
88 89	225.6 238.8	38.938 38.746	0.178 -0.014			
90	253.2	38.743	-0.014			
90	268.2	38.74	-0.017			
92	283.8	38.744	-0.016			
93	300.6	38.742	-0.018			
94	318.6	38.743	-0.017			
95	337.2	38.745	-0.015			
96	357.6	38.745	-0.015			
97	378.6	38.746	-0.014			
98	400.8	38.743	-0.017			
99	424.8	38.744	-0.016			
100	450	38.684	-0.076			
101	476.4	38.74	-0.02			

				Slug To	est - Water Level Data	Page 3 of 3
			-	Project:	Westford Comm WW System	
				Number	: 19-161	
				Client:	Town of Westford	
	Time [s]	Water Level [ft]	WL Change [ft]		A	
102	504.6	38.742	-0.018			
103	534.606	38.741	-0.019			
104	566.4	38.74	-0.02			
105	600	38.74	-0.02			
106	636	38.74	-0.02			
107	672	38.74	-0.02			
108	714	38.738	-0.022			
109	756.122	38.734	-0.026			
110	798	38.737	-0.023			
111	846.277	38.637	-0.123			
112	900	38.735	-0.025			
113	948	38.735	-0.025			
114	1008	38.736	-0.024			
115	1068	38.735	-0.025			
116	1128	38.735	-0.025			

					Slug re	st - Analy	ses Re	P 0 · 1		
					Project:	Westford C	Comm W	/W System		
					Number:	19-161				
					Client:	Town of W	estford			
Location: Westford, VT Slug Test: SB-4 Slug					g Test Well: SB-4					
Test Conducted by: SYR					Test Date: 12/1/2021					
٩qu	ifer Thickness: 19.7	73 ft								
	Analysis Name	Analysis Performed	bAnalysis Date	Method I	name	Well		T [ft²/d]	K [ft/d]	S
1	Bouwer & Rice Anal	/:SYR	12/3/2021	Bouwer	& Rice	SB-4			2.11 × 10 ¹	
						X				

Attachment 4: 2021 Darcy's Law Capacity Calculations

Š 15

Attachment 3-1: Revised Darcy's Law Capacity Analysis, A-A', Absorption Trenches

Project Title: Westford Community Wastewater System, Hydrogeologic Analysis, Maple Shade Site Stone Project No.: 19-161 Date: February 10, 2022 Prepared by: Amy Macrellis

Darcy's Law Calculations: Q = KiA

- Q = design flow (gallons / day)
- K = Hydraulic conductivity (feet / day)
- i = Hydraulic gradient (slope of water table, unitless)
- A = transmitting soil cross-sectional area (D) times length of disposal system (L) in square feet, where
 - D = depth to impeding layer or water table, minus required vertical separation, minus system depth

Assumptions:

- 1 Hydraulic conductivity (K) = 69 feet/day (measured at TP-110)
- 2 Water table slope (i) is similar to ground surface slope and surface of lacustrine clay layer identifed in MW-1 and extrapolated to TP-111 along the A-A' cross section = 12/150 = 8.0%
- 3 Depth to limiting feature or bottom of pit lacustrine clay encountered at 13.5 feet bgs in MW-1 assumed to occur at similar depths throughout the area leachfields would be sited
- 4 Design is for in-ground trenches with trench bottom located 1.5 feet below ground surface
- 5 Required separation distance to seasonal high groundwater is 3.0 feet for septic tank effluent
- 6 System length (L) across slope (perpendicular to contours) = 145 feet (along A-A', from west of TP-107 to 25' setback from slope >20%, as presented in PER Alternatives 4 and 5

Calculations:

D =

- K = 69 ft/day
- i = 0.080
- L = 145 ft.
 - 9.00 ft. =13.5 ft. -1.5 ft. 3.0 ft.
- Q = 69 ft/day x 0.08 x (145 ft x 9 ft) x 7.48 gal/ft ^ 3

Q = 53,900 gallons/day

(2017 = 38,975 gpd)

Path: O:\PROJ-19\WRM\19-161 Westford WW\Data\Capacity and Mounding analysis\Capacity Analysis.xlsx STONE ENVIRONMENTAL, INC. 2/10/2022 anm

Attachment 3-2: Revised Darcy's Law Capacity Analysis, B-B', Absorption Trenches

Project Title: Westford Community Wastewater System, Hydrogeologic Analysis, Maple Shade Site Stone Project No.: 19-161 Date: February 10, 2022 Prepared by: Amy Macrellis

Darcy's Law Calculations: Q = KiA

- Q = design flow (gallons / day)
- K = Hydraulic conductivity (feet / day)
- i = Hydraulic gradient (slope of water table, unitless)
- A = transmitting soil cross-sectional area (D) times length of disposal system (L) in square feet, where
 - D = depth to impeding layer or water table, minus required vertical separation, minus system depth

Assumptions:

- 1 Hydraulic conductivity (K) = 69 feet/day (measured at TP-110)
- 2 Water table slope (i) based on elevations of ESHGW at TP-19, TP-020 and TP-123 along the B-B' cross section as estimated from site survey and Lidar = 11'-230'= 4.8%
- 3 Depth to limiting feature or bottom of pit (ranges from 6.2 ft to 15.0 ft where leachfields would be sited; use average of TP-019 (revised 12/21) and TP-020 = 10.6 feet below ground surface)
- 4 Design is for in-ground trenches with trench bottom located 1.5 feet below ground surface
- 5 Required separation distance to seasonal high groundwater is 3.0 feet for septic tank effluent
- 6 System length (L) across slope (perpendicular to contours) = 145 feet (along B-B', from Alternative 4 and Alternative 5 site plans; approximately from TP-019 to TP-123)

Calculations:

- K = 69 ft/day
- i = 0.048
- L = 145 ft.
- D = 6.10 ft. = 10.6 ft. -1.5 ft. -3.0 ft.
- Q = 69 ft/day x 0.048 x (145 ft x 6.1 ft) x 7.48 gal/ft ^ 3
- Q = 21,900 gallons/day

(2017 = 10,968 gpd)

Attachment 3-3: Darcy's Law Capacity Analysis, D-D', Absorption Trenches

Project Title: Westford Community Wastewater System, Hydrogeologic Analysis, Maple Shade Site Stone Project No.: 19-161 Date: February 10, 2022 Prepared by: Amy Macrellis

Darcy's Law Calculations: Q = KiA

- Q = design flow (gallons / day)
- K = Hydraulic conductivity (feet / day)
- i = Hydraulic gradient (slope of water table, unitless)
- A = transmitting soil cross-sectional area (D) times length of disposal system (L) in square feet, where
 - D = depth to impeding layer or water table, minus required vertical separation, minus system depth

Assumptions:

- 1 Hydraulic conductivity (K) = 69 feet/day (measured at TP-110)
- 2 Water table slope (i) based on ESHGW roughly follows ground surface slope in the proposed disposal field area along the D-D' as estimated from site survey and Lidar = 19/192'= 9.9%
- 3 Depth to limiting feature use shallowest instance of redoximorphic featrues in MW-3 at 13.0 feet below ground surface
- 4 Design is for in-ground trenches with trench bottom located 1.5 feet below ground surface
- 5 Required separation distance to seasonal high groundwater is 3.0 feet for septic tank effluent
- 6 System length (L) across slope (perpendicular to contours) = 190 feet (along D-D', from Alternative 4 and Alternative 5 site plans; from east of TP-023 to west of TP-114)

Calculations:

D =

- K = 69 ft/day
- i = 0.099
- L = 190 ft.
 - 8.50 ft. =13.0 ft. -1.5 ft. 3.0 ft.
- Q = 69 ft/day x 0.099 x (190 ft x 8.5 ft) x 7.48 gal/ft ^ 3
- Q = 82,500 gallons/day

Attachment 3-4: Darcy's Law Capacity Analysis, A-A', Subsurface Drip Disposal

Project Title: Westford Community Wastewater System, Hydrogeologic Analysis, Maple Shade Site Stone Project No.: 19-161 Date: February 10, 2022 Prepared by: Amy Macrellis

Darcy's Law Calculations: Q = KiA

- Q = design flow (gallons / day)
- K = Hydraulic conductivity (feet / day)
- i = Hydraulic gradient (slope of water table, unitless)
- A = transmitting soil cross-sectional area (D) times length of disposal system (L) in square feet, where
 - D = depth to impeding layer or water table, minus required vertical separation, minus system depth

Assumptions:

- 1 Hydraulic conductivity (K) = 69 feet/day (measured at TP-110)
- 2 Water table slope (i) is similar to ground surface slope and surface of lacustrine clay layer identifed in MW-1 and extrapolated to TP-111 along the A-A' cross section = 12/150 = 8.0%
- 3 Depth to limiting feature or bottom of pit lacustrine clay encountered at 13.5 feet bgs in MW-1 assumed to occur at similar depths throughout the area leachfields would be sited
- 4 Design is for subsurface drip irrigation disposal system with bottom 1.0 feet below ground surface
- 5 Required separation distance to seasonal high groundwater is 3.0 feet for septic tank effluent
- 6 System length (L) across slope (perpendicular to contours) = 145 feet (along A-A', from west of TP-107 to 25' setback from slope >20%, as presented in PER Alternatives 4 and 5

Calculations:

D =

- K = 69 ft/day
- i = 0.080
- L = 145 ft.
 - 9.50 ft. =13.5 ft. -1.0 ft. 3.0 ft.
- Q = 69 ft/day x 0.08 x (145 ft x 9.5 ft) x 7.48 gal/ft ^ 3
- Q = 56,900 gallons/day

Path: O:\PROJ-19\WRM\19-161 Westford WW\Data\Capacity and Mounding analysis\Capacity Analysis.xlsx STONE ENVIRONMENTAL, INC. 2/10/2022 anm

Attachment 3-5: Darcy's Law Capacity Analysis, B-B', Subsurface Drip Disposal

Project Title: Westford Community Wastewater System, Hydrogeologic Analysis, Maple Shade Site Stone Project No.: 19-161 Date: February 10, 2022 Prepared by: Amy Macrellis

Darcy's Law Calculations: Q = KiA

- Q = design flow (gallons / day)
- K = Hydraulic conductivity (feet / day)
- i = Hydraulic gradient (slope of water table, unitless)
- A = transmitting soil cross-sectional area (D) times length of disposal system (L) in square feet, where
 - D = depth to impeding layer or water table, minus required vertical separation, minus system depth

Assumptions:

- 1 Hydraulic conductivity (K) = 69 feet/day (measured at TP-110)
- 2 Water table slope (i) based on elevations of ESHGW at TP-19, TP-020 and TP-123 along the B-B' cross section as estimated from site survey and Lidar = 11'-230'= 4.8%
- 3 Depth to limiting feature or bottom of pit (ranges from 6.2 ft to 15.0 ft where leachfields would be sited; use average of TP-019 (revised 12/21) and TP-020 = 10.6 feet below ground surface)
- 4 Design is for subsurface drip irrigation disposal system with bottom 1.0 feet below ground surface
- 5 Required separation distance to seasonal high groundwater is 3.0 feet for septic tank effluent
- 6 System length (L) across slope (perpendicular to contours) = 145 feet (along B-B', from Alternative 4 and Alternative 5 site plans; approximately from TP-019 to TP-123)

Calculations:

- K = 69 ft/day
- i = 0.048
- L = 145 ft.
- D = 6.60 ft. = 10.6 ft. 1.0 ft. 3.0 ft.
- Q = 69 ft/day x 0.048 x (145 ft x 6.6 ft) x 7.48 gal/ft ^ 3
- Q = 23,700 gallons/day

Attachment 3-6: Darcy's Law Capacity Analysis, D-D', Subsurface Drip Disposal

Project Title: Westford Community Wastewater System, Hydrogeologic Analysis, Maple Shade Site Stone Project No.: 19-161 Date: February 10, 2022 Prepared by: Amy Macrellis

Darcy's Law Calculations: Q = KiA

- Q = design flow (gallons / day)
- K = Hydraulic conductivity (feet / day)
- i = Hydraulic gradient (slope of water table, unitless)
- A = transmitting soil cross-sectional area (D) times length of disposal system (L) in square feet, where D = depth to impeding layer or water table, minus required vertical separation, minus system depth

Assumptions:

- 1 Hydraulic conductivity (K) = 69 feet/day (measured at TP-110)
- 2 Water table slope (i) based on ESHGW roughly follows ground surface slope in the proposed disposal field area along the D-D' as estimated from site survey and Lidar = 19/192'= 9.9%
- 3 Depth to limiting feature use shallowest instance of redoximorphic featrues in MW-3 at 13.0 feet below ground surface
- 4 Design is for subsurface drip irrigation disposal system with bottom 1.0 feet below ground surface
- 5 Required separation distance to seasonal high groundwater is 3.0 feet for septic tank effluent
- 6 System length (L) across slope (perpendicular to contours) = 190 feet (along D-D', from Alternative 4 and Alternative 5 site plans; from east of TP-023 to west of TP-114)

Calculations:

D =

- K = 69 ft/day
- i = 0.099
- L = 190 ft.
 - 9.00 ft. =13.0 ft. -1.0 ft. 3.0 ft.
- Q = 69 ft/day x 0.099 x (190 ft x 9 ft) x 7.48 gal/ft ^ 3
- Q = 87,400 gallons/day

Attachment 5: February 2022 Summary of GME-DEC Correspondence

GREEN MOUNTAIN ENGINEERING, INC.

MEMORANDUM

DATE:	02/18/2022
SUBJECT:	Westford Community Wastewater System – DEC meeting Summary and Disposal System Discussion
то:	Town of Westford
FROM:	Brad Washburn, P.E.

On February 03, Brad Washburn (GME), Bryan Harrington (IDR, VTDEC), Bruce Douglas (VT DEC) and Rob Sarmanian (Oakson) held a zoom meeting to discuss the design and permitting of a drip dispersal system for the proposed Town of Westford Community Wastewater Disposal System. The main discussion was regarding the replacement area requirements for drip disperal system for design capacities over 6,500 gallons per day as the current IDR rules do not directly address drip dispersal. The current IDR rules require dual alternating system for typical pressure distribution systems using septic tank effluent. GME's preliminary design discussions with Oakson have raised some questions to the resting of drip fields for extended periods of time and Oakson has indicated that they would rather utilize the entire disposal system, year-round at half of the application rate. Currently, Oakson has laid out a series of drip zones within the useable portion of disposal testing area.

The discussion concluded that DEC is aware that drip dispersal is not addressed in the IDR rules and are willing to look at proposed operational scenarios. The scenarios discussed included:

- Year-round use of the entire disposal system at a reduced loading rate
- The buildout of the system to 150% of the design flow (same as in-ground trench system)
- More frequent rotation of the online disposal fields. Monthly, quarterly etc.

Bruce and Bryan indicated that they were not able to commit to any scenario discussed during the meeting but were willing to work through a scenario that all parties are comfortable with. Bruce indicated that currently, there are no year-round drip dispersal system in the State with design flows over 6,500 gallon per day and that the revised IDR rules are currently being drafted which will address the drip dispersal requirements.

Overall, the meeting was positive, and it appears that with the appropriate supporting data, that there is a good chance that 100% full redundancy of the drip field will NOT be required.

GREEN MOUNTAIN ENGINEERING, INC.

MEMORANDUM

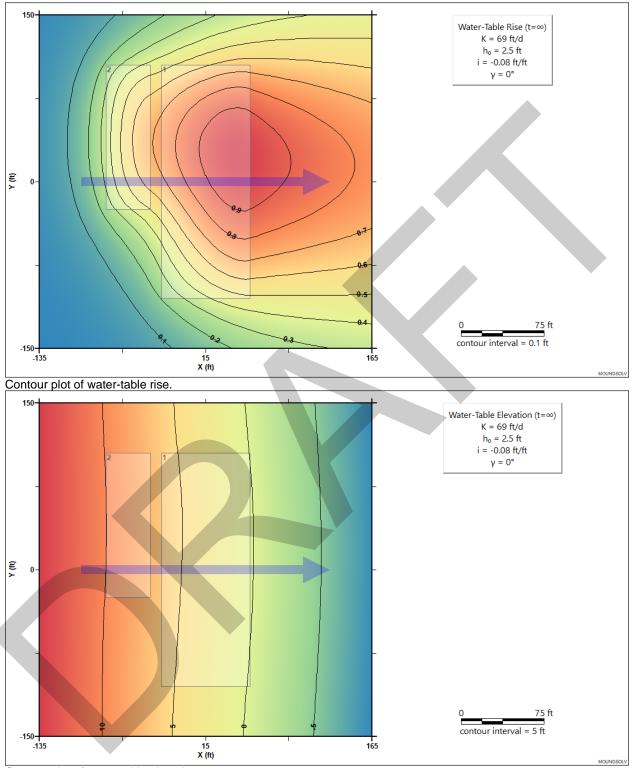
GME will no longer be the design engineer for the system. Rob Sarmanian from Oakson wanted to pass along his offer to the town and new design team Oakson's services to provide technical information and first-hand accounts of what has been discussed so far.

Attachment 6: Mounding Analysis Results

17


MOUNDSOLV

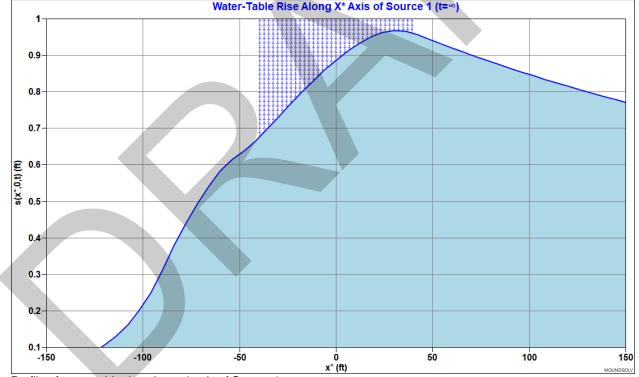
GROUNDWATER MOUNDING ANALYSIS FOR A SLOPING WATER-TABLE AQUIFER ZLOTNIK ET AL. (2017) SOLUTION Maple Shade Disposal Site, Alternative 4 Field 3 (Source 1) and Field 4 (Source 2) A-A' Section, March 3, 2022


I.Solution MethodZlotnik et al. (2017) steady-state solution for a rectangular source (linearization method 1)

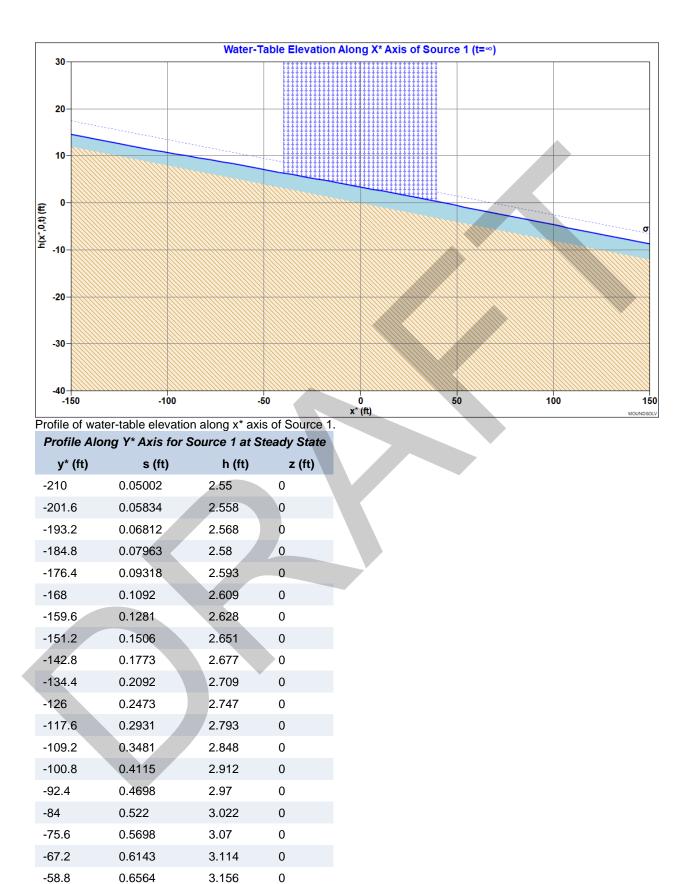
	2.	Site Description
Aquifer Data		
Property	Value	
Horizontal hydraulic conductivity, K (ft/d)	69	-
Initial saturated thickness, ho (ft)	2.5	
Maximum allowable water-table rise, σ (ft)	3	
Dip, <i>i</i> (ft/ft)	-0.08	
Slope rotation from x axis, γ (°)	0	

Recharge	Sources	
Property	Source 1	Source 2
X coordinate at center, X (ft)	15	-55
Y coordinate at center, Y (ft)	0	40
Dimension along x^* axis, L (ft)	80	40
Dimension along y^* axis, $W(ft)$	210	130
Rotation from slope direction, ϕ (°)	0	0
Recharge rate, Q (ft ³ /d)	842	521
Infiltration rate, q (ft/d)	0.05011904762	0.1001923077

			3.	Monit	oring Points
	Stea	dy State	е		
Name	x (ft)	y (ft)	s (ft)	h (ft)	z (ft)
Source 1	15	0	0.8871	3.387	0
MP-1, TP-111	135	0	0.8155	-6.285	-9.6
MP-2, Field 4 upslope	-85	0	0.2159	10.72	8

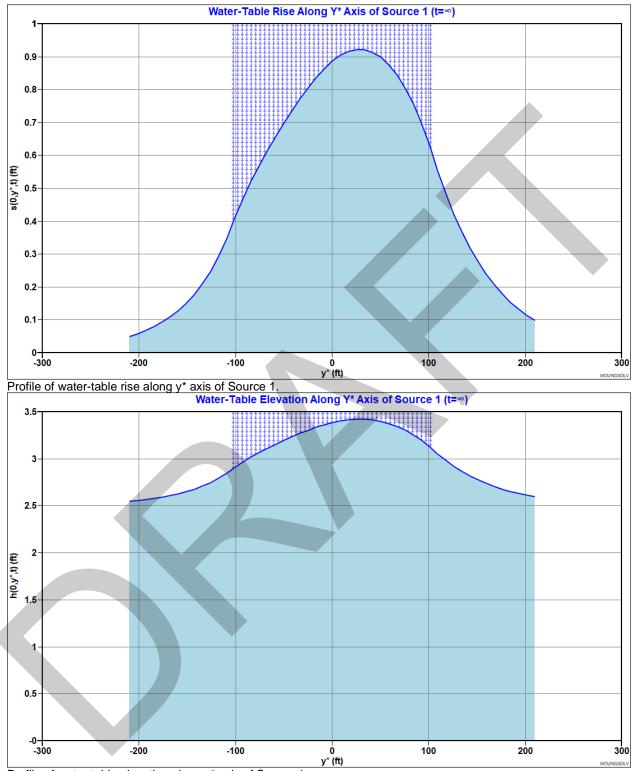


Contour plot of water-table elevation.


D		0	4.
	-	or Source 1 at	-
x* (ft)	s (ft)	h (ft)	z (ft)
-150	0.03684	14.54	12
-144	0.0454	14.07	11.52
-138	0.05598	13.6	11.04
-132	0.06908	13.13	10.56
-126	0.08531	12.67	10.08
-120	0.1055	12.21	9.6
-114	0.1305	11.75	9.12
-108	0.1617	11.3	8.64
-102	0.2008	10.86	8.16
-96	0.2497	10.43	7.68
-90	0.3112	10.01	7.2
-84	0.3775	9.598	6.72
-78	0.4385	9.178	6.24
-72	0.4936	8.754	5.76
-66	0.5422	8.322	5.28
-60	0.5832	7.883	4.8
-54	0.6152	7.435	4.32
-48	0.6373	6.977	3.84
-42	0.6636	6.524	3.36
-36	0.6975	6.077	2.88
-30	0.7317	5.632	2.4
-24	0.7655	5.185	1.92
-18	0.7983	4.738	1.44
-12	0.8298	4.29	0.96
-6	0.8596	3.84	0.48
0	0.8871	3.387	0
6	0.9118	2.932	-0.48
12	0.9332	2.473	-0.96
18	0.9503	2.01	-1.44
24	0.9624	1.542	-1.92
30	0.9683	1.068	-2.4
36	0.9667	0.5867	-2.88
42	0.9567	0.09667	-3.36
48	0.9445	-0.3955	-3.84
54	0.9326	-0.8874	-4.32
60	0.9208	-1.379	-4.8
	0.0200		

66	0.9092	-1.871	-5.28
72	0.8978	-2.362	-5.76
78	0.8867	-2.853	-6.24
84	0.8758	-3.344	-6.72
90	0.8651	-3.835	-7.2
96	0.8547	-4.325	-7.68
102	0.8445	-4.815	-8.16
108	0.8346	-5.305	-8.64
114	0.8249	-5.795	-9.12
120	0.8155	-6.285	-9.6
126	0.8062	-6.774	-10.08
132	0.7973	-7.263	-10.56
138	0.7885	-7.751	-11.04
144	0.78	-8.24	-11.52
150	0.7717	-8.728	-12

The axes of Source 1 (x*, y*) are rotated 0° from the axes of mapping coordinate system (x, y) Water-Table Rise Along X* Axis of Source 1 (t=*)



Profile of water-table rise along x* axis of Source 1.

-50.4	0.6966	3.197	0
-42	0.735	3.235	0
-33.6	0.7716	3.272	0
-25.2	0.8058	3.306	0
-16.8	0.8369	3.337	0
-8.4	0.8643	3.364	0
0	0.8871	3.387	0
8.4	0.9047	3.405	0
16.8	0.9166	3.417	0
25.2	0.9223	3.422	0
33.6	0.9215	3.421	0
42	0.9137	3.414	0
50.4	0.8987	3.399	0
58.8	0.876	3.376	0
67.2	0.8453	3.345	0
75.6	0.806	3.306	0
84	0.7577	3.258	0
92.4	0.6997	3.2	0
100.8	0.6315	3.131	0
109.2	0.5548	3.055	0
117.6	0.4844	2.984	0
126	0.422	2.922	0
134.4	0.367	2.867	0
142.8	0.3185	2.819	0
151.2	0.2761	2.776	0
159.6	0.2391	2.739	0
168	0.2068	2.707	0
176.4	0.1787	2.679	0
184.8	0.1544	2.654	0
193.2	0.1334	2.633	0
201.6	0.1151	2.615	0
210	0.0994	2.599	0
		The a	xes of Soul

The axes of Source 1 (x^* , y^*) are rotated 0° from the axes of mapping coordinate system (x, y)

Profile of water-table elevation along y* axis of Source 1.

Notation

h is water-table elevation above datum¹

 h_0 is aquifer saturated thickness prior to mounding

i is dip of aquifer

K is horizontal hydraulic conductivity

L is dimension of recharge source parallel to x^* axis

q is infiltration rate (= $Q / L \cdot W$)

Q is recharge rate

s is water-table rise above static water table

W is dimension of recharge source parallel to y^* axis

x, y are mapping Cartesian coordinate axes

 x^* , y^* are recharge source Cartesian coordinate axes

z is elevation above datum¹

 γ is angle between x axis and dip direction

 ϕ is angle between dip direction and x^* axis of recharge source

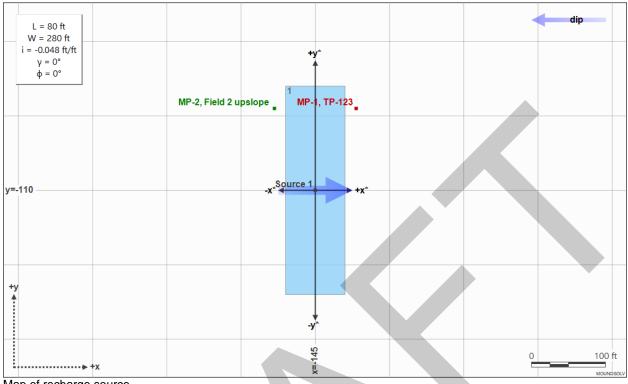
 σ is maximum acceptable water-table rise

¹Elevation datum is the base of aquifer beneath the center of primary recharge source

Report generated by MOUNDSOLV v4.0 on 03 Mar 2022 at 11:59:09

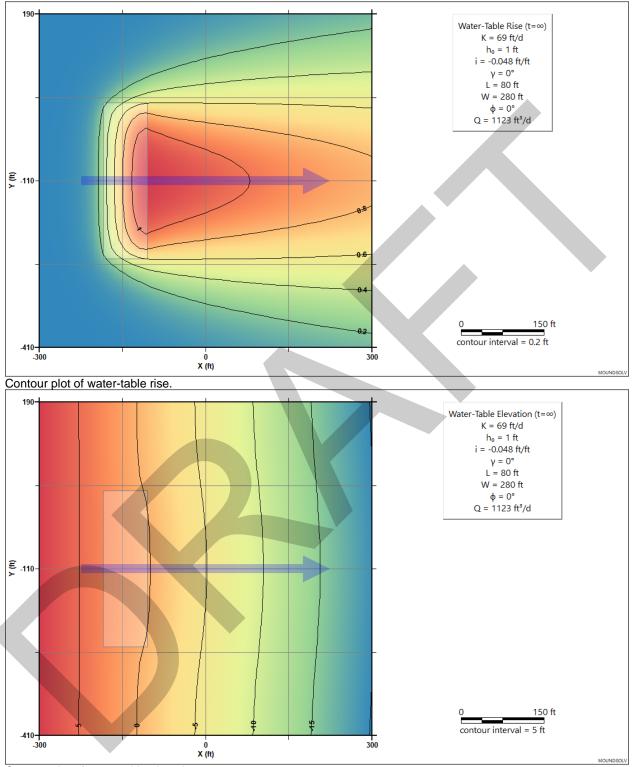
MOUNDSOLV (www.aqtesolv.com)

Copyright © 2019-2021 HydroSOLVE, Inc. All rights reserved.


MOUNDSOLV

GROUNDWATER MOUNDING ANALYSIS FOR A SLOPING WATER-TABLE AQUIFER ZLOTNIK ET AL. (2017) SOLUTION Maple Shade Disposal Site, Alternative 4 Field 2 (Source 1) B-B' Section, March 8, 2022

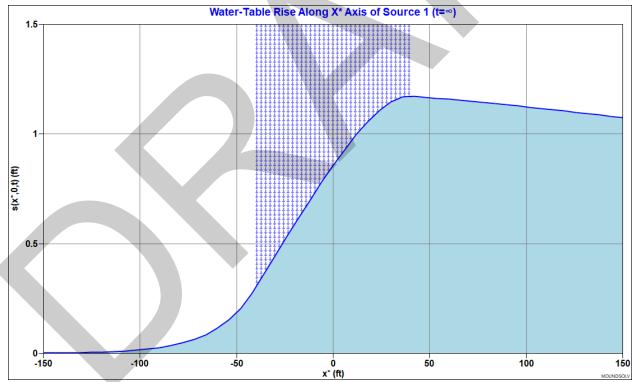
I.Solution MethodZlotnik et al. (2017) steady-state solution for a rectangular source (linearization method 1)


	2.	Site Description
Aquifer Data		
Property	Value	
Horizontal hydraulic conductivity, K (ft/d)	69	
Initial saturated thickness, ho (ft)	1	
Maximum allowable water-table rise, σ (ft)	1.66	
Dip, <i>i</i> (ft/ft)	-0.048	
Slope rotation from x axis, γ (°)	0	

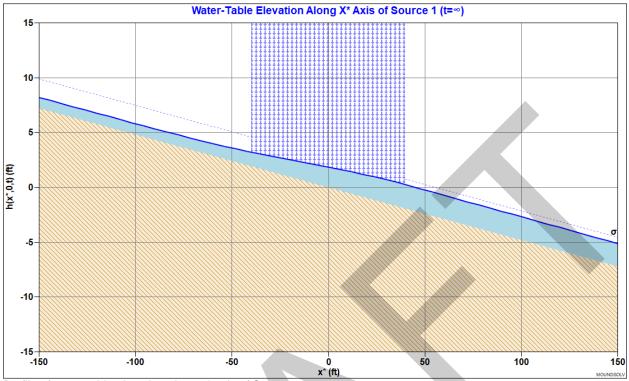
Recharge Sources	s	
Property	Source 1	
X coordinate at center, X (ft)	-145	
Y coordinate at center, Y (ft)	-110	
Dimension along x* axis, <i>L</i> (ft)	80	
Dimension along y* axis, W (ft)	280	
Rotation from slope direction, ϕ (°)	0	
Recharge rate, Q (ft³/d)	1123	
Infiltration rate, q (ft/d)	0.05013392857	

Map of recharge source.

			3.	Monit	oring Points
	Stea	dy State			
Name	x (ft)	y (ft)	s (ft)	h (ft)	z (ft)
Source 1	-145	-110	0.857	1.857	0
MP-1, TP-123	-90	0	0.872	-0.768	-2.64
MP-2, Field 2 upslope	-200	0	0.1133	3.753	2.64



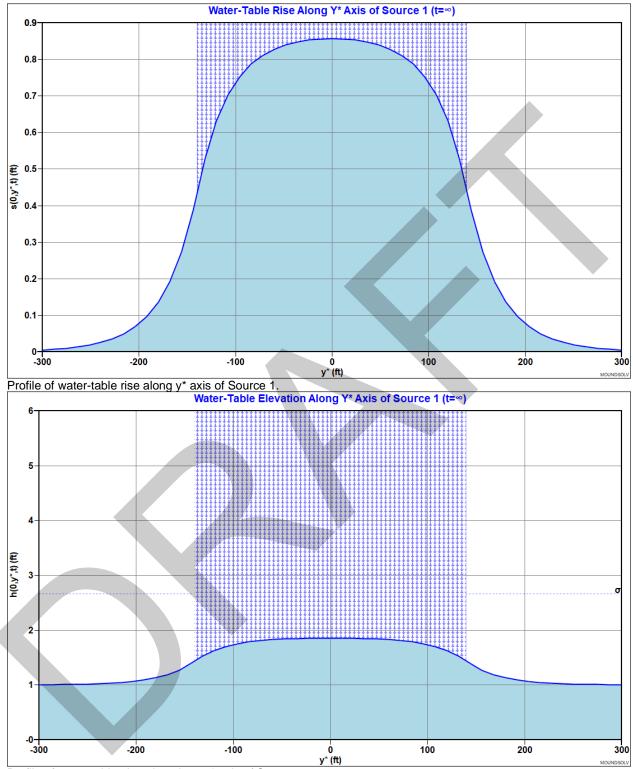
Contour plot of water-table elevation.


	4.	<u>Pro</u>
Along X* Axis f	-	
s (ft)) z (ft)	
0.001422	7.2	
0.001907	6.912	
0.002557	6.624	
0.003429	6.336	
0.004597	6.048	
0.006163	5.76	
0.008261	5.472	
0.01107	5.184	
0.01484	4.896	
0.01988	4.608	
0.02663	4.32	
0.03566	4.032	
0.04776	3.744	
0.06394	3.456	
0.08559	3.168	
0.1145	2.88	
0.1533	2.592	
0.205	2.304	
0.2742	2.016	
0.3605	1.728	
0.4473	1.44	
0.533	1.152	
0.6173	0.864	
0.6998	0.576	
0.78	0.288	
0.857	0	
0.9299	-0.288	
0.9975	-0.576	
1.058	-0.864	
1.109	-1.152	
1.148	-1.44	
1.17	-1.728	
1.171	-2.016	
1.167	-2.304	
1.163	-2.592	
1.158	-2.88	
1.109 1.148 1.17 1.171 1.167 1.163	-1.152 -1.44 -1.728 -2.016 -2.304 2 -2.592	

66	1.154	-1.014	-3.168
72	1.149	-1.307	-3.456
78	1.144	-1.6	-3.744
84	1.138	-1.894	-4.032
90	1.133	-2.187	-4.32
96	1.128	-2.48	-4.608
102	1.122	-2.774	-4.896
108	1.116	-3.068	-5.184
114	1.111	-3.361	-5.472
120	1.105	-3.655	-5.76
126	1.099	-3.949	-6.048
132	1.093	-4.243	-6.336
138	1.087	-4.537	-6.624
144	1.081	-4.831	-6.912
150	1.075	-5.125	-7.2

The axes of Source 1 (x^* , y^*) are rotated 0° from the axes of mapping coordinate system (x, y)

Profile of water-table rise along x* axis of Source 1.



Profile of water-table elevation along x* axis of Source 1.

Profile Al	ong Y* Axis for a	Source 1 at S	teady State
y* (ft)	s (ft)	h (ft)	z (ft)
-300	0.005199	1.005	0
-288	0.007129	1.007	0
-276	0.009792	1.01	0
-264	0.01347	1.013	0
-252	0.01858	1.019	0
-240	0.02568	1.026	0
-228	0.03559	1.036	0
-216	0.04948	1.049	0
-204	0.06902	1.069	0
-192	0.09667	1.097	0
-180	0.136	1.136	0
-168	0.1923	1.192	0
-156	0.273	1.273	0
-144	0.3886	1.389	0
-132	0.5287	1.529	0
-120	0.6313	1.631	0
-108	0.7027	1.703	0

-96	0.7525	1.752	0
-84	0.7872	1.787	0
-72	0.8115	1.811	0
-60	0.8284	1.828	0
-48	0.8402	1.84	0
-36	0.8481	1.848	0
-24	0.8532	1.853	0
-12	0.8561	1.856	0
0	0.857	1.857	0
12	0.8561	1.856	0
24	0.8532	1.853	0
36	0.8481	1.848	0
48	0.8402	1.84	0
60	0.8284	1.828	0
72	0.8115	1.811	0
84	0.7872	1.787	0
96	0.7525	1.752	0
108	0.7027	1.703	0
120	0.6313	1.631	0
132	0.5287	1.529	0
144	0.3886	1.389	0
156	0.273	1.273	0
168	0.1923	1.192	0
180	0.136	1.136	0
192	0.09667	1.097	0
204	0.06902	1.069	0
216	0.04948	1.049	0
228	0.03559	1.036	0
240	0.02568	1.026	0
252	0.01858	1.019	0
264	0.01347	1.013	0
276	0.009792	1.01	0
288	0.007129	1.007	0
300	0.005199	1.005	0
			axes of Soul

The axes of Source 1 (x^* , y^*) are rotated 0° from the axes of mapping coordinate system (x, y)

Profile of water-table elevation along y* axis of Source 1.

Notation

h is water-table elevation above datum¹

 h_0 is aquifer saturated thickness prior to mounding

i is dip of aquifer

K is horizontal hydraulic conductivity

L is dimension of recharge source parallel to x^* axis

q is infiltration rate (= $Q / L \cdot W$)

Q is recharge rate

s is water-table rise above static water table

W is dimension of recharge source parallel to y^* axis

x, y are mapping Cartesian coordinate axes

 x^* , y^* are recharge source Cartesian coordinate axes

z is elevation above datum¹

 γ is angle between x axis and dip direction

 ϕ is angle between dip direction and x^* axis of recharge source

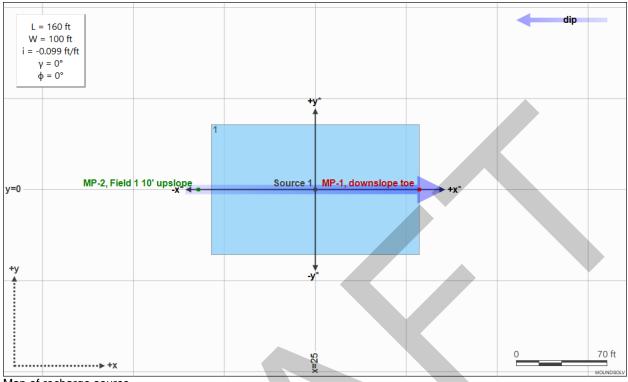
 σ is maximum acceptable water-table rise

¹Elevation datum is the base of aquifer beneath the center of primary recharge source

Report generated by MOUNDSOLV v4.0 on 08 Mar 2022 at 15:01:26

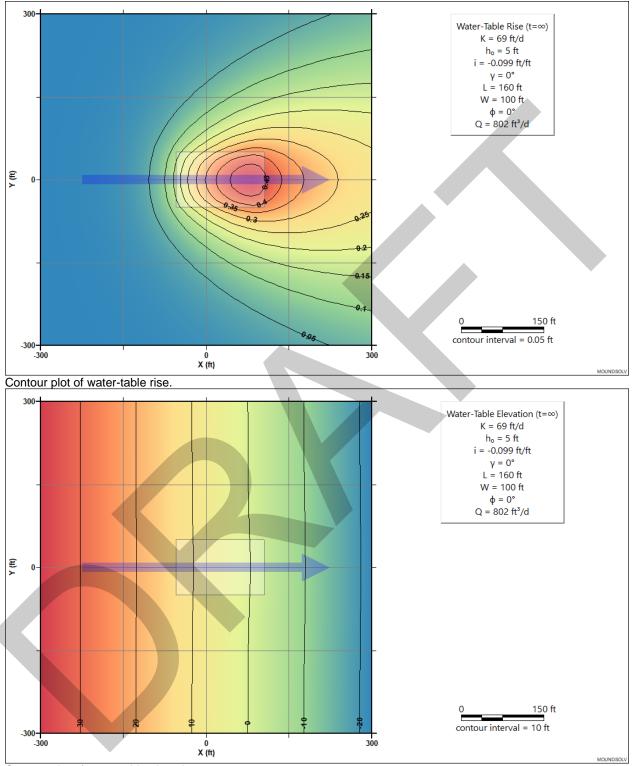
MOUNDSOLV (www.aqtesolv.com)

Copyright © 2019-2021 HydroSOLVE, Inc. All rights reserved.


MOUNDSOLV

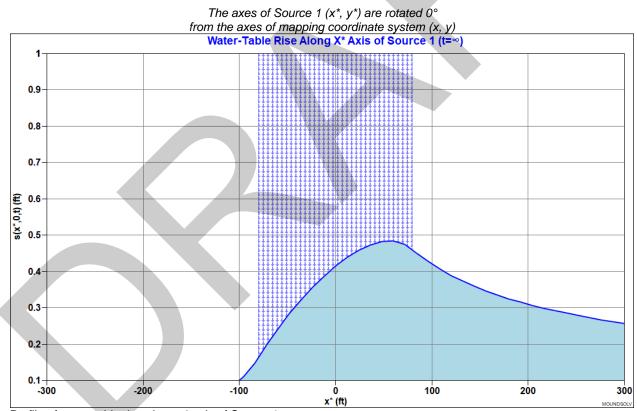
GROUNDWATER MOUNDING ANALYSIS FOR A SLOPING WATER-TABLE AQUIFER ZLOTNIK ET AL. (2017) SOLUTION ZLOTNIK ET AL. (2017) SOLUTION Maple Shade Disposal Site, Alternative 4 Field 1 (Source 1) D-D' Section, March 7, 2022

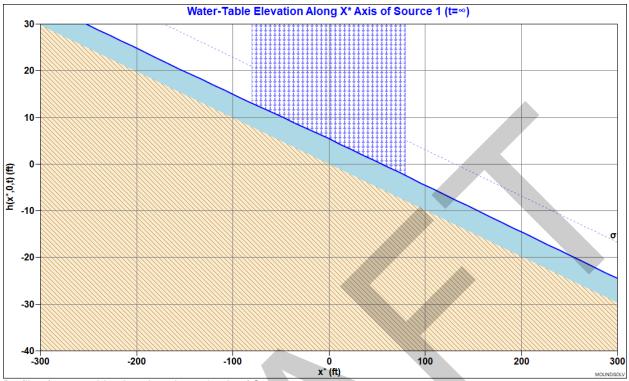
1. <u>Solution Method</u>


Zlotnik et al. (2017) steady-state solution for a rectangular source (linearization method 1)

Aquifer DataPropertyValueHorizontal hydraulic conductivity69Initial saturated thickness5Maximum allowable water-table rise8Dip, i (ft/ft)9Slope rotation from x axis, γ (°)0PropertySourcesPropertySourcesX coordinate at center, X (ft)25Y coordinate at center, Y (ft)0Dimension along x* axis, L (ft)160
Horizontal hydraulic conductivity, K (ft/d)69Initial saturated thickness, h_0 (ft)5Maximum allowable water-table rise, σ (ft)8Dip, i (ft/ft)-0.099Slope rotation from x axis, γ (°)0 Recharge Sources PropertySource1X coordinate at center, X (ft)25Y coordinate at center, Y (ft)0
Initial saturated thickness, h_0 (ft)5Maximum allowable water-table rise, σ (ft)8Dip, i (ft/ft)-0.099Slope rotation from x axis, γ (°)0 Recharge Sources PropertySource 1X coordinate at center, X (ft)25Y coordinate at center, Y (ft)0
Maximum allowable water-table rise, σ (ft)8Dip, i (ft/ft)-0.099Slope rotation from x axis, γ (°)0Recharge SourcesPropertySource 1X coordinate at center, X (ft)25Y coordinate at center, Y (ft)0
Dip, i (ft/ft) -0.099 Slope rotation from x axis, γ (°) 0 Recharge Sources Source 1 Property Source 1 X coordinate at center, X (ft) 25 Y coordinate at center, Y (ft) 0
Slope rotation from x axis, γ (°)0Recharge SourcesSource 1PropertySource 1X coordinate at center, X (ft)25Y coordinate at center, Y (ft)0
Recharge SourcesPropertySource 1X coordinate at center, X (ft)25Y coordinate at center, Y (ft)0
PropertySource 1X coordinate at center, X (ft)25Y coordinate at center, Y (ft)0
X coordinate at center, X (ft)25Y coordinate at center, Y (ft)0
Y coordinate at center, Y (ft) 0
Dimension along x^* axis, L (ft) 160
Dimension along y^* axis, $W(ft)$ 100
Rotation from slope direction, ϕ (°) 0
Recharge rate, Q (ft ³ /d) 802
Infiltration rate, q (ft/d) 0.050125

Map of recharge source.

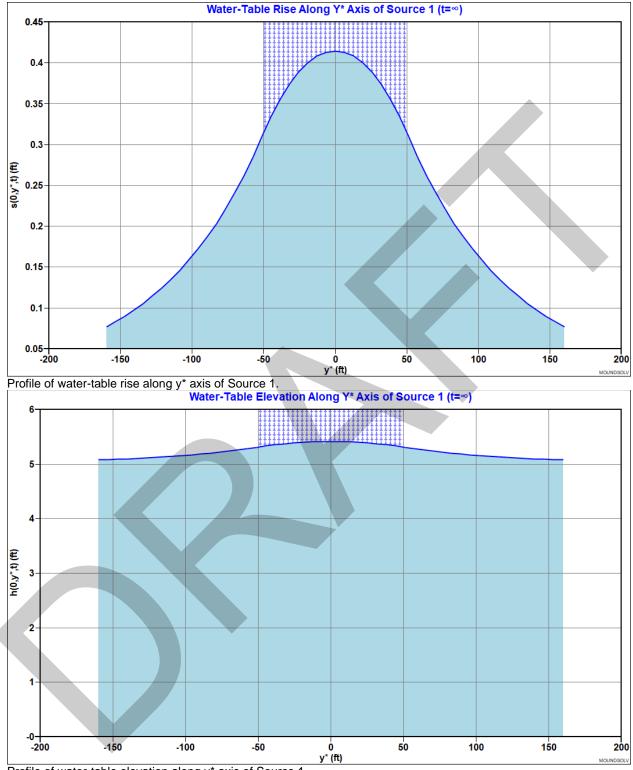

			3.	Monitori	ng Points
	Steady	State			
Name	x (ft)	y (ft)	s (ft)	h (ft)	z (ft)
Source 1	25	0	0.4147	5.415	0
MP-1, downslope toe	105	0	0.4601	-2.46	-7.92
MP-2, Field 1 10' upslope	-65	0	0.1272	14.04	8.91


Contour plot of water-table elevation.

			4.	<u>Profile Da</u>
Profile A	long X* Axis fo	or Source 1 at a	Steady State	
x* (ft)	s (ft)	h (ft)	z (ft)	
-300	0.001055	34.7	29.7	
-288	0.001367	33.51	28.51	
-276	0.001772	32.33	27.32	
-264	0.0023	31.14	26.14	
-252	0.002988	29.95	24.95	
-240	0.003886	28.76	23.76	
-228	0.005062	27.58	22.57	
-216	0.006604	26.39	21.38	
-204	0.008631	25.2	20.2	
-192	0.0113	24.02	19.01	
-180	0.01483	22.83	17.82	
-168	0.01951	21.65	16.63	
-156	0.02574	20.47	15.44	
-144	0.03407	19.29	14.26	
-132	0.04527	18.11	13.07	
-120	0.06042	16.94	11.88	
-108	0.08105	15.77	10.69	
-96	0.1093	14.61	9.504	
-84	0.1482	13.46	8.316	
-72	0.197	12.32	7.128	
-60	0.2425	11.18	5.94	
-48	0.2839	10.04	4.752	
-36	0.3217	8.886	3.564	
-24	0.356	7.732	2.376	
-12	0.3871	6.575	1.188	
0	0.4147	5.415	0	
12	0.4388	4.251	-1.188	
24	0.4588	3.083	-2.376	
36	0.4739	1.91	-3.564	
48	0.4829	0.7309	-4.752	
60	0.4839	-0.4561	-5.94	
72	0.4742	-1.654	-7.128	
84	0.4514	-2.865	-8.316	
96	0.4277	-4.076	-9.504	
108	0.407	-5.285	-10.69	
120	0.389	-6.491	-11.88	

132	0.3731	-7.695	-13.07
144	0.359	-8.897	-14.26
156	0.3464	-10.1	-15.44
168	0.3351	-11.3	-16.63
180	0.3249	-12.5	-17.82
192	0.3155	-13.69	-19.01
204	0.307	-14.89	-20.2
216	0.2991	-16.08	-21.38
228	0.2918	-17.28	-22.57
240	0.2851	-18.47	-23.76
252	0.2787	-19.67	-24.95
264	0.2728	-20.86	-26.14
276	0.2673	-22.06	-27.32
288	0.2621	-23.25	-28.51
300	0.2572	-24.44	-29.7

Profile of water-table rise along x* axis of Source 1.



Profile of water-table elevation along x* axis of Source 1.

FIONE AION			auy State
y* (ft)	s (ft)	h (ft)	z (ft)
-160	0.07705	5.077	0
-153.6	0.08335	5.083	0
-147.2	0.09019	5.09	0
-140.8	0.09764	5.098	0
-134.4	0.1057	5.106	0
-128	0.1146	5.115	0
-121.6	0.1242	5.124	0
-115.2	0.1347	5.135	0
-108.8	0.1461	5.146	0
-102.4	0.1586	5.159	0
-96	0.1722	5.172	0
-89.6	0.1871	5.187	0
-83.2	0.2034	5.203	0
-76.8	0.2211	5.221	0
-70.4	0.2404	5.24	0
-64	0.2615	5.262	0
-57.6	0.2845	5.285	0
-51.2	0.3095	5.31	0

-44.8	0.3347	5.335	0
-38.4	0.3564	5.356	0
-32	0.3744	5.374	0
-25.6	0.3891	5.389	0
-19.2	0.4004	5.4	0
-12.8	0.4084	5.408	0
-6.4	0.4132	5.413	0
0	0.4147	5.415	0
6.4	0.4132	5.413	0
12.8	0.4084	5.408	0
19.2	0.4004	5.4	0
25.6	0.3891	5.389	0
32	0.3744	5.374	0
38.4	0.3564	5.356	0
44.8	0.3347	5.335	0
51.2	0.3095	5.31	0
57.6	0.2845	5.285	0
64	0.2615	5.262	0
70.4	0.2404	5.24	0
76.8	0.2211	5.221	0
83.2	0.2034	5.203	0
89.6	0.1871	5.187	0
96	0.1722	5.172	0
102.4	0.1586	5.159	0
108.8	0.1461	5.146	0
115.2	0.1347	5.135	0
121.6	0.1242	5.124	0
128	0.1146	5.115	0
134.4	0.1057	5.106	0
140.8	0.09764	5.098	0
147.2	0.09019	5.09	0
153.6	0.08335	5.083	0
160	0.07705	5.077	0
		The a	axes of Sou

The axes of Source 1 (x^* , y^*) are rotated 0° from the axes of mapping coordinate system (x, y)

Profile of water-table elevation along y* axis of Source 1.

Notation

h is water-table elevation above datum¹

 h_0 is aquifer saturated thickness prior to mounding

i is dip of aquifer

K is horizontal hydraulic conductivity

L is dimension of recharge source parallel to x^* axis

q is infiltration rate (= $Q / L \cdot W$)

Q is recharge rate

s is water-table rise above static water table

W is dimension of recharge source parallel to y^* axis

x, y are mapping Cartesian coordinate axes

 x^* , y^* are recharge source Cartesian coordinate axes

z is elevation above datum¹

 γ is angle between x axis and dip direction

 ϕ is angle between dip direction and x^* axis of recharge source

 σ is maximum acceptable water-table rise

¹Elevation datum is the base of aquifer beneath the center of primary recharge source

Report generated by MOUNDSOLV v4.0 on 08 Mar 2022 at 14:25:25

MOUNDSOLV (www.aqtesolv.com)

Copyright © 2019-2021 HydroSOLVE, Inc. All rights reserved.